
(Convolutional) deep kernel
machines

Laurence Aitchison
Assistant Prof.

University of Bristol

Edward MilsomAdam Yang Ben AnsonSebastian Ober

Edward
Milsom

shallow deep

feature linear
regression

kernel kernel ridge
regression

For good performance, we need to choose a
good feature extractor / kernel

linear kernel polynomial kernel RBF kernel

Problem: can’t choose a good feature
extractor/kernel for complex data like images...

need to learn a representation
(i.e. feature extractor / kernel!)

shallow

feature linear
regression

kernel kernel ridge
regression

shallow deep

feature linear
regression neural net

kernel kernel ridge
regression

Multiple layers
Flexibility at each layer

shallow deep

feature linear
regression neural net

kernel kernel ridge
regression

deep kernel
methods

Multiple layers
Flexibility at each layer

no representation
learning

has representation
learning

What representation learning looks like

before/no representation learning:
• Hand-picked kernel/features
• Finite randomly initialized NN
• Infinite randomly initialized network

(NNGP/NTK)

learned representation learning:
• Trained NN
• Trained deep kernel method.

• dot product of neural
activations, for all pairs
of training examples.

• intuition: basically the
cosine similarity

This matrix = the kernel!

Class 1 Class 2 Class 3

Cl
as

s 3
Cl

as
s 2

Cl
as

s 1

Class 1 Class 2 Class 3

Cl
as

s 3
Cl

as
s 2

Cl
as

s 1

Pictures from Wu et al. (2022)

deep kernel
processes

Summary

rewrite prior in
terms of kernels

Bayesian neural
networks

deep Gaussian
processes

special
case of

Infinite-width limit

deep kernel
machines

rewrite prior in
terms of kernels

Infinite-width limit

deep Gaussian
processes

deep kernel
processes

deep kernel
machines

Part 0 Bayesian neural
networks

special
case of

Bayesian neural networks (BNNs) are a special
case of deep Gaussian processes (DGPs)

batch of
input vectors, 𝑿

DGP

𝑃×𝑁!

𝑃×𝑁"

𝑃×𝑃

𝑃×𝑃

𝑃×𝑃

𝑃 = number of datapoints
𝑁ℓ = width of layer ℓ

GPs from Duvenaud et al. (2014)

hiddens,
𝑭! ∼ 𝒩(𝟎,𝑲"(𝑿)))

hiddens,
𝑭# ∼ 𝒩(𝟎,𝑲"(𝑭!))

outputs,
*𝒚 ∼ 𝒩 𝟎,𝑲"(𝑭#)

𝑃×𝑁#

BNN

batch of
input vectors, 𝑿

hiddens,
𝑾𝟎 ∼ 𝒩(0,1/𝑁%))
𝑾! ∼ 𝒩(0,1/𝑁&))
𝑭! = 𝜙 𝑿𝑾& 𝑾!

hiddens,
𝑾# ∼ 𝒩(0,1/𝑁!))
𝑭# = 𝜙 𝑭! 𝑾#

outputs,
𝒘' ∼ 𝒩(0,1/𝑁#))
*𝒚 = 𝜙 𝑭# 𝒘#

𝑃×𝑁!

𝑃×𝑁#

𝑃×𝑁"

𝑃×1
𝑃×1

BNNs are a special case of
DGPs, with a particular choice
of kernel:

𝑲! 𝐅 = 𝜙 𝑭 𝜙 𝑭 "

𝑃×𝑁𝑃×𝑃 𝑁×𝑃

rewrite prior in
terms of kernels

Infinite-width limit

deep Gaussian
processes

deep kernel
processes

deep kernel
machines

Part 0 Bayesian neural
networks

special
case of

Infinite-width limit

deep Gaussian
processes

deep kernel
processes

deep kernel
machines

Part 1 Bayesian neural
networks

special
case of

rewrite prior in
terms of kernels

Deep kernel processes are “reparametrized”
deep Gaussian processes

DGP

𝑃 = number of datapoints
𝑁ℓ = width of layer ℓ

GPs from Duvenaud et al. (2014)

𝑃×𝑁! 𝑃×𝑃

hiddens,
𝑭! ∼ 𝒩(𝟎,𝑲"(𝑿)))

𝑃×𝑁" 𝑃×𝑃

hiddens,
𝑭# ∼ 𝒩(𝟎,𝑲"(𝑭!))

batch of
input vectors, 𝑿

𝑃×𝑁#

BNN

hiddens,
𝑾𝟎 ∼ 𝒩(0,1/𝑁%))
𝑾! ∼ 𝒩(0,1/𝑁&))
𝑭! = 𝜙 𝑿𝑾& 𝑾!
𝑃×𝑁!

batch of
input vectors, 𝑿

𝑃×𝑁#

hiddens,
𝑾# ∼ 𝒩(0,1/𝑁!))
𝑭# = 𝜙 𝑭! 𝑾#
𝑃×𝑁"

outputs,
𝒘' ∼ 𝒩(0,1/𝑁#))
*𝒚 = 𝜙 𝑭# 𝒘#
𝑃×1

𝑃×𝑃

outputs,
*𝒚 ∼ 𝒩 𝟎,𝑲"(𝑭#)
𝑃×1

𝑮# = 𝑭#𝑭#(/𝑁#

Gram matrices

𝑮! = 𝑭!𝑭!(/𝑁!

𝑮& = 𝑿𝑿(/𝑁)
𝑃×𝑃

𝑃×𝑃

𝑃×𝑃

Trick 1: most kernels of interest can be
computed from the Gram matrix

𝑲! 𝑭ℓ = 𝑲 𝑮ℓ
𝑮ℓ = 𝑭ℓ𝑭ℓ#/𝑁ℓ

• Holds for kernels corresponding to infinite-width BNNs!

• Doesn’t quite hold for 𝑲$ 𝐅 = 𝜙 𝑭 𝜙 𝑭
#
	, which corresponds to

finite BNNs.
• Also true for standard GP kernels that only depend on distance

between datapoints 𝑖 and 𝑗, because we can recover distance from
the Gram matrix, (Duvenaud et al. 2014)

Trick 2: Gram matrices are Wishart distributed

To get next Gram matrix, we first sample a bunch of features,
𝑭ℓ ∼ 𝒩 𝟎,𝑲 𝑮ℓ%&

And then compute the Gram matrix
𝑮ℓ = 𝑭ℓ𝑭ℓ#/𝑁ℓ

But this exactly matches the definition of the Wishart distribution!
𝑮ℓ ∼ 𝒲(𝑲 𝑮ℓ%& /𝑁ℓ, 𝑁ℓ)

(e.g. see Wikipedia for pdf, moments etc.)

In deep-kernel methods, we switch to
working entirely with Gram matrices

DKP

𝑮# ∼ 𝒲(𝑲(𝑮!)/𝑁#, 𝑁#)

𝑮! ∼ 𝒲 𝑲(𝑮& /𝑁!, 𝑁!)

outputs,
*𝒚 ∼ 𝒩(𝟎,𝑲	(𝑮#))

Trick 1: Kernel can be written as a
function of the Gram matrix

Trick 2: Gram matrices
are Wishart distributed

𝑮& = 𝑿𝑿(/𝑁)

𝑃 = number of datapoints
𝑁ℓ = width of layer ℓ

𝑮# = 𝑭#𝑭#(/𝑁#

Gram matrices

batch of
input vectors, 𝑿

DGP

𝑮! = 𝑭!𝑭!(/𝑁!

𝑮& = 𝑿𝑿(/𝑁)

𝑃×𝑁!

𝑃×𝑁"

𝑃×𝑃

𝑃×𝑃

𝑃×𝑃

𝑃×𝑃

𝑃×𝑃

𝑃×𝑃

GPs from Duvenaud et al. (2014)

hiddens,
𝑭! ∼ 𝒩(𝟎,𝑲"(𝑿)))

hiddens,
𝑭# ∼ 𝒩(𝟎,𝑲"(𝑭!))

outputs,
*𝒚 ∼ 𝒩 𝟎,𝑲"(𝑭# + 𝜎#𝑰)

𝑃×𝑁#

𝑲(𝑮#) 𝑲(𝑮$) 𝑲(𝑮%)𝑮$ 𝑮%

Sampling the prior in the kernelized DGP

• Next Gram matrix is “centered” on the kernel,
𝐸 𝑮& 𝑮' = 𝑲(𝑮')

DKP

𝑮# ∼ 𝒲(𝑲(𝑮!)/𝑁#, 𝑁#)

𝑮! ∼ 𝒲 𝑲(𝑮& /𝑁!, 𝑁!)

outputs,
𝐲 ∼ 𝒩 𝟎,𝑲	(𝑮# + 𝜎#𝑰)

𝑮& = 𝑿𝑿(/𝑁)
intuitive, understandable prior over functions
in a deep, nonlinear function approximator!

Developing practical methods + our results
We developed:
• Two processes: “deep Wishart process” and “deep inverse Wishart process”
• VI with priors + approximate posteriors over Gram matrices, not features.
• a bunch of approximate posteriors (e.g.)

[1] Aitchison, Yang and Ober. “Deep kernel processes” ICML (2021)
[2] Ober and Aitchison “An approximate posterior for the deep Wishart process” NeurIPS (2021)
[3] Ober, Anson, Milsom and Aitchison “An improved approximate posterior for the deep Wishart process” UAI (2023)

Infinite-width limit

deep Gaussian
processes

deep kernel
processes

deep kernel
machines

Part 1 Bayesian neural
networks

special
case of

rewrite prior in
terms of kernels

rewrite prior in
terms of kernels

deep Gaussian
processes

deep kernel
processes

deep kernel
machines

Infinite-width limit

Part 2 Bayesian neural
networks

special
case of

Why take an infinite width limit?

• Connect to theory of NNs (which is also infinite-width).
• Get rid of stochasticity (which is a pain in practice).
• Develop effective, practical deep kernel methods.

Taking the infinite-width limit of a DKP/DGP...
• VI in an infinite-width DKP/DGP.
• Need to be careful with the limit to make sure we keep representation learning
• sdf
ELBO:

ℒ 𝑮), … , 𝑮* = log P(Y|	𝑮*) −,
ℓ,)

*

𝜈ℓ𝐷-.(𝒩(0, 𝑮ℓ)	‖𝒩(0,𝑲(𝑮ℓ/))))

• Optimizes intermediate layer Gram matrices,
• Encourages good performance
• Keeps learned Gram matrix, 𝑮ℓ, similar to NNGP Gram matrix, 𝑲(𝑮ℓ/))

likelihood approx post prior

What is a deep kernel machine?
• A nonlinear function approximator
• With multiple layers
• Parameterised by Gram matrices, not features or weights
• Trained using the DKM objective:

ℒ 𝑮), … , 𝑮* = log P(Y|	𝑮*) −,
ℓ,)

*

𝜈ℓ𝐷-.(𝒩(0, 𝑮ℓ)	‖𝒩(0,𝑲(𝑮ℓ/))))

• Optimizes intermediate layer Gram matrices,
• Encourages good performance
• Keeps learned Gram matrix, 𝑮ℓ, similar to NNGP Gram matrix, 𝑲(𝑮ℓ/))

likelihood approx post prior

Convolutional deep kernel machines are
“kernel SOTA”

But how slow are DKMs? Surprisingly quick!
• We develop a novel inducing-point scheme…
• …which was roughly same cost as training a standard CNN.
• So the DKM was orders of magnitude faster than the kernel methods in the table…
• …but still slow compared to CNNs, (3 days/1200 epochs on 1 GPU for this result)
• But lots of structure in the parameter space: we’re working on a natural gradient method that should converge

much faster.

Edward Milsom

deep kernel
processes

Summary

rewrite prior in
terms of kernels

deep kernel
machines

Bayesian neural
networks

deep Gaussian
processes

special
case of

Infinite-width limit

Deep kernel landscape + our priorities
Our priorities
• Library: user friendly, ”drop in”

replacement for NNs.
• Deep kernel transformers
• Speed up (natural gradients)

shallow deep

feature linear
regression neural net

kernel kernel ridge
regression

deep kernel
methods

Huge future opportunities:

If you’re interested, get in touch:
laurence.aitchison@bristol.ac.uk

[1] Aitchison, Yang and Ober. “Deep kernel processes” ICML (2021)
[2] Ober and Aitchison “An approximate posterior for the deep Wishart process” NeurIPS (2021)
[3] Ober, Anson, Milsom and Aitchison “An improved approximate posterior for the deep Wishart process” UAI (2023)
[4] Yang, Robeyns, Milsom, Anson, Schoots, Aitchison “A theory of representation learning gives a deep generalisation of kernel methods” ICML (2023)
[5] Milsom, Anson, Aitchison “Convolutional deep kernel machines” arXiv

Appendix slides

We get a deep kernel machine by taking an
infinite-width limit of a DGP
• True posterior over features becomes multivariate Gaussian [1]

𝑃 𝑭), … , 𝑭* 𝑿, 𝒀 =7
ℓ,)

*
,

0,)

1ℓ
𝒩(𝒇0

ℓ ; 0, 𝑮ℓ∗)

• We choose a family of approximate posteriors capturing the true posterior:

𝑄 𝑭), … , 𝑭* =7
ℓ,)

*
,

0,)

1ℓ
𝒩 𝒇0

ℓ ; 0, 𝑮ℓ

• Gram matrices, 𝑮), …𝑮*, are the same kind-of-thing as in deep kernel process!

𝑮ℓ =
1
𝑁ℓ
𝑭ℓ𝑭ℓ3

• But here, Gram matrices appear as parameters of approximate posterior
• So to find the Gram matrices, we optimize the ELBO!

[1] Yang, Robeyns, Milsom, Anson, Schoots, Aitchison “A theory of representation learning gives a deep generalisation of kernel methods” ICML (2023)

Deep kernel processes should work better
because they have fewer local optima

𝑖 = 1 𝑖 = 2

𝑖 = 1 𝑖 = 2

Deep kernel processes should work better
because they have fewer local optima

• Implies loads of symmetric local
optima…
• …and local optima are bad if you

have unimodal approximate
posteriors.
• DKPs don’t have these symmetries,

so far fewer local optima!

