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For good performance, we need to choose a 
good feature extractor / kernel

linear kernel polynomial kernel RBF kernel



Problem: can’t choose a good feature 
extractor/kernel for complex data like images...

need to learn a representation 
(i.e. feature extractor / kernel!)
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What representation learning looks like

before/no representation learning:
• Hand-picked kernel/features
• Finite randomly initialized NN
• Infinite randomly initialized network 

(NNGP/NTK)

learned representation learning:
• Trained NN
• Trained deep kernel method.

• dot product of neural 
activations, for all pairs 
of training examples.

• intuition: basically the 
cosine similarity

This matrix = the kernel!
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Pictures from Wu et al. (2022)
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Bayesian neural networks (BNNs) are a special 
case of deep Gaussian processes (DGPs)

batch of 
input vectors, 𝑿

DGP

𝑃×𝑁!

𝑃×𝑁"

𝑃×𝑃

𝑃×𝑃

𝑃×𝑃

𝑃 = number of datapoints
𝑁ℓ = width of layer ℓ

GPs from Duvenaud et al. (2014)

hiddens,
𝑭! ∼ 𝒩(𝟎,𝑲"(𝑿)))

hiddens,
𝑭# ∼ 𝒩(𝟎,𝑲"(𝑭!))

outputs, 
*𝒚 ∼ 𝒩 𝟎,𝑲"(𝑭# )

𝑃×𝑁#

BNN

batch of 
input vectors, 𝑿

hiddens,
𝑾𝟎 ∼ 𝒩(0,1/𝑁%))
𝑾! ∼ 𝒩(0,1/𝑁&))
𝑭! = 𝜙 𝑿𝑾& 𝑾!

hiddens,
𝑾# ∼ 𝒩(0,1/𝑁!))
𝑭# = 𝜙 𝑭! 𝑾#

outputs,
𝒘' ∼ 𝒩(0,1/𝑁#))
*𝒚 = 𝜙 𝑭# 𝒘#

𝑃×𝑁!

𝑃×𝑁#

𝑃×𝑁"

𝑃×1
𝑃×1

BNNs are a special case of 
DGPs, with a particular choice 
of kernel: 

𝑲! 𝐅 = 𝜙 𝑭 𝜙 𝑭 "

𝑃×𝑁𝑃×𝑃 𝑁×𝑃
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Deep kernel processes are “reparametrized” 
deep Gaussian processes

DGP

𝑃 = number of datapoints
𝑁ℓ = width of layer ℓ

GPs from Duvenaud et al. (2014)

𝑃×𝑁! 𝑃×𝑃

hiddens,
𝑭! ∼ 𝒩(𝟎,𝑲"(𝑿)))

𝑃×𝑁" 𝑃×𝑃

hiddens,
𝑭# ∼ 𝒩(𝟎,𝑲"(𝑭!))

batch of 
input vectors, 𝑿

𝑃×𝑁#

BNN

hiddens,
𝑾𝟎 ∼ 𝒩(0,1/𝑁%))
𝑾! ∼ 𝒩(0,1/𝑁&))
𝑭! = 𝜙 𝑿𝑾& 𝑾!
𝑃×𝑁!

batch of 
input vectors, 𝑿

𝑃×𝑁#

hiddens,
𝑾# ∼ 𝒩(0,1/𝑁!))
𝑭# = 𝜙 𝑭! 𝑾#
𝑃×𝑁"

outputs,
𝒘' ∼ 𝒩(0,1/𝑁#))
*𝒚 = 𝜙 𝑭# 𝒘#
𝑃×1

𝑃×𝑃

outputs, 
*𝒚 ∼ 𝒩 𝟎,𝑲"(𝑭# )
𝑃×1

𝑮# = 𝑭#𝑭#(/𝑁#

Gram matrices

𝑮! = 𝑭!𝑭!(/𝑁!

𝑮& = 𝑿𝑿(/𝑁)
𝑃×𝑃

𝑃×𝑃

𝑃×𝑃



Trick 1: most kernels of interest can be 
computed from the Gram matrix

𝑲! 𝑭ℓ = 𝑲 𝑮ℓ
𝑮ℓ = 𝑭ℓ𝑭ℓ#/𝑁ℓ

• Holds for kernels corresponding to infinite-width BNNs!

• Doesn’t quite hold for 𝑲$ 𝐅 = 𝜙 𝑭 𝜙 𝑭
#
	, which corresponds to 

finite BNNs.
• Also true for standard GP kernels that only depend on distance 

between datapoints 𝑖 and 𝑗, because we can recover distance from 
the Gram matrix, (Duvenaud et al. 2014)



Trick 2: Gram matrices are Wishart distributed

To get next Gram matrix, we first sample a bunch of features,
𝑭ℓ ∼ 𝒩 𝟎,𝑲 𝑮ℓ%&

And then compute the Gram matrix
𝑮ℓ = 𝑭ℓ𝑭ℓ#/𝑁ℓ

But this exactly matches the definition of the Wishart distribution!
𝑮ℓ ∼ 𝒲(𝑲 𝑮ℓ%& /𝑁ℓ, 𝑁ℓ)

(e.g. see Wikipedia for pdf, moments etc.)



In deep-kernel methods, we switch to 
working entirely with Gram matrices

DKP

𝑮# ∼ 𝒲(𝑲(𝑮!)/𝑁#, 𝑁#)

𝑮! ∼ 𝒲 𝑲(𝑮& /𝑁!, 𝑁!)

outputs, 
*𝒚 ∼ 𝒩(𝟎,𝑲	(𝑮#))

Trick 1: Kernel can be written as a 
function of the Gram matrix

Trick 2: Gram matrices 
are Wishart distributed

𝑮& = 𝑿𝑿(/𝑁)

𝑃 = number of datapoints
𝑁ℓ = width of layer ℓ

𝑮# = 𝑭#𝑭#(/𝑁#

Gram matrices

batch of 
input vectors, 𝑿

DGP

𝑮! = 𝑭!𝑭!(/𝑁!

𝑮& = 𝑿𝑿(/𝑁)

𝑃×𝑁!

𝑃×𝑁"

𝑃×𝑃

𝑃×𝑃

𝑃×𝑃

𝑃×𝑃

𝑃×𝑃

𝑃×𝑃

GPs from Duvenaud et al. (2014)

hiddens,
𝑭! ∼ 𝒩(𝟎,𝑲"(𝑿)))

hiddens,
𝑭# ∼ 𝒩(𝟎,𝑲"(𝑭!))

outputs, 
*𝒚 ∼ 𝒩 𝟎,𝑲"(𝑭# + 𝜎#𝑰)

𝑃×𝑁#



𝑲(𝑮#) 𝑲(𝑮$) 𝑲(𝑮%)𝑮$ 𝑮%

Sampling the prior in the kernelized DGP

• Next Gram matrix is “centered” on the kernel,
𝐸 𝑮& 𝑮' = 𝑲(𝑮')

DKP

𝑮# ∼ 𝒲(𝑲(𝑮!)/𝑁#, 𝑁#)

𝑮! ∼ 𝒲 𝑲(𝑮& /𝑁!, 𝑁!)

outputs, 
𝐲 ∼ 𝒩 𝟎,𝑲	(𝑮# + 𝜎#𝑰)

𝑮& = 𝑿𝑿(/𝑁)
intuitive, understandable prior over functions 
in a deep, nonlinear function approximator!



Developing practical methods + our results
We developed:
• Two processes: “deep Wishart process” and “deep inverse Wishart process” 
• VI with priors + approximate posteriors over Gram matrices, not features.
• a bunch of approximate posteriors (e.g.         ) 

[1] Aitchison, Yang and Ober. “Deep kernel processes”  ICML (2021)
[2] Ober and Aitchison “An approximate posterior for the deep Wishart process” NeurIPS (2021)
[3] Ober, Anson, Milsom and Aitchison “An improved approximate posterior for the deep Wishart process” UAI (2023)
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Why take an infinite width limit?

• Connect to theory of NNs (which is also infinite-width).
• Get rid of stochasticity (which is a pain in practice).
• Develop effective, practical deep kernel methods.



Taking the infinite-width limit of a DKP/DGP...
• VI in an infinite-width DKP/DGP.
• Need to be careful with the limit to make sure we keep representation learning
• sdf
ELBO:

ℒ 𝑮), … , 𝑮* = log P(Y|	𝑮*) −,
ℓ,)

*

𝜈ℓ𝐷-.(𝒩(0, 𝑮ℓ)	‖𝒩(0,𝑲(𝑮ℓ/))))

• Optimizes intermediate layer Gram matrices,
• Encourages good performance
• Keeps learned Gram matrix, 𝑮ℓ, similar to NNGP Gram matrix, 𝑲(𝑮ℓ/))

likelihood approx post prior



What is a deep kernel machine?
• A nonlinear function approximator
• With multiple layers
• Parameterised by Gram matrices, not features or weights
• Trained using the DKM objective:

ℒ 𝑮), … , 𝑮* = log P(Y|	𝑮*) −,
ℓ,)

*

𝜈ℓ𝐷-.(𝒩(0, 𝑮ℓ)	‖𝒩(0,𝑲(𝑮ℓ/))))

• Optimizes intermediate layer Gram matrices,
• Encourages good performance
• Keeps learned Gram matrix, 𝑮ℓ, similar to NNGP Gram matrix, 𝑲(𝑮ℓ/))

likelihood approx post prior



Convolutional deep kernel machines are 
“kernel SOTA”

But how slow are DKMs?   Surprisingly quick!
• We develop a novel inducing-point scheme…
• …which was roughly same cost as training a standard CNN.
• So the DKM was orders of magnitude faster than the kernel methods in the table…
• …but still slow compared to CNNs, (3 days/1200 epochs on 1 GPU for this result)
• But lots of structure in the parameter space: we’re working on a natural gradient method that should converge 

much faster.

Edward Milsom
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Deep kernel landscape + our priorities
Our priorities
• Library: user friendly, ”drop in” 

replacement for NNs.
• Deep kernel transformers
• Speed up (natural gradients)

shallow deep

feature linear 
regression neural net

kernel kernel ridge 
regression

deep kernel 
methods

Huge future opportunities:

If you’re interested, get in touch:
laurence.aitchison@bristol.ac.uk

[1] Aitchison, Yang and Ober. “Deep kernel processes”  ICML (2021)
[2] Ober and Aitchison “An approximate posterior for the deep Wishart process” NeurIPS (2021)
[3] Ober, Anson, Milsom and Aitchison “An improved approximate posterior for the deep Wishart process” UAI (2023)
[4] Yang, Robeyns, Milsom, Anson, Schoots, Aitchison “A theory of representation learning gives a deep generalisation of kernel methods” ICML (2023)
[5] Milsom, Anson, Aitchison “Convolutional deep kernel machines” arXiv



Appendix slides



We get a deep kernel machine by taking an 
infinite-width limit of a DGP
• True posterior over features becomes multivariate Gaussian [1]

𝑃 𝑭), … , 𝑭* 𝑿, 𝒀 =7
ℓ,)

*
,

0,)

1ℓ
𝒩(𝒇0

ℓ ; 0, 𝑮ℓ∗)

• We choose a family of approximate posteriors capturing the true posterior:

𝑄 𝑭), … , 𝑭* =7
ℓ,)

*
,

0,)

1ℓ
𝒩 𝒇0

ℓ ; 0, 𝑮ℓ

• Gram matrices, 𝑮), …𝑮*, are the same kind-of-thing as in deep kernel process!

𝑮ℓ =
1
𝑁ℓ
𝑭ℓ𝑭ℓ3

• But here, Gram matrices appear as parameters of approximate posterior
• So to find the Gram matrices, we optimize the ELBO!

[1] Yang, Robeyns, Milsom, Anson, Schoots, Aitchison “A theory of representation learning gives a deep generalisation of kernel methods” ICML (2023)
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𝑖 = 1 𝑖 = 2

Deep kernel processes should work better 
because they have fewer local optima

• Implies loads of symmetric local 
optima…
• …and local optima are bad if you 

have unimodal approximate 
posteriors.
• DKPs don’t have these symmetries, 

so far fewer local optima!


