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Most models are not robust to distribution shifts.

We want ML models that generalize

Training data

Out-of-distribution
test data



▪ Popular class of methods
▪ Improve generalization with distribution shifts
▪ (consistent improvements on WILDS & Wild-Time benchmarks)

▪ It does work, but not (only) because of mixup!
▪ It implicitly resamples the training data

▪ How? Why does it help?
▪ Why did prior work miss it? How did we find out?

Selective mixup

Yao et al., Improving out-of-distribution robustness via selective augmentation (LISA), ICLR 2022

Hwang et al., Selecmix: Debiased learning by contradicting-pair sampling, NeurIPS 2022

Li et al. Are data-driven explanations robust against out-of-distribution data?, 2023

Lu et al. Semantic discriminative mixup for generalizable sensor-based cross-domain activity recognition, 2022

Palakkadavath et al., Improving domain generalization with interpolation robustness, NeurIPS DistShift 2022

Tian et al., Cifair: Constructing continuous domains of invariant features for image fair classifications. KBS, 2023

Xu et al., Adversarial domain adaptation with domain mixup, AAAI 2020



▪ Standard training:

▪ Model f ,  training example x ,  label y ,  loss ℒ

▪ Training with mixup:

▪ Mixing coefficient c (random or 0.5),  paired examples            

▪ and        

A bit of background: classical mixup

Zhang et al., mixup: Beyond empirical risk minimization, 2017

Picked at random



A bit of background: classical mixup

Improves generalization (even without distribution shifts)

Very often. Not always. It rarely hurts.

Why does it work?
Regularization, augmentation,
introduces label noise,
helps learn rare features, ...



▪ Idea: applying mixup on selected pairs, according to some criterion

▪ Many variants! Focus on LISA

▪ For data with domain labels:  collected in different places, periods of time, ...

Yao et al., Improving out-of-distribution robustness via selective augmentation, ICLR 2022

Selective mixup

Variant #1:  same class / different domain

Variant #2:  different class / same domain

Colored-MNIST

Label

Sometimes one works,
sometimes the other

Most of
tr. data



With binary classification, it perfectly balances the classes!

Key insight:
Selective mixup implicitly resamples the data

Class A Class B

75% 25%

1.  Sample from original distribution A A A B

2.  Get pairs with “different class” criterion B B B A

Identical 
proportions
in aggregate!



▪ In general: makes distributions of features/classes more uniform

▪ (“regression towards the mean”)

▪ Resampling/reweighting is a known baseline for label shift / imbalanced data

▪ Two unrelated methods are actually doing the same thing!

Key insight:
Selective mixup implicitly resamples the data



▪ The missing ablation

Why was this missed in prior work?

Step 1:  select pairs Step 2:  mix them

Training data



Why was this missed in prior work?

Step 1:  select pairs Step 2:  mix them

Vanilla mixup



▪ Missing ablation:  build mini-batches with the sampled pairs, but no mixing!

Why was this missed in prior work?

Step 1:  select pairs Step 2:  mix them



Empirical verification
▪ Needs experiments:  we can’t predict when the mixing helps

▪ Overall effects:  sum of  vanilla mixup +  resampling

▪ Sometimes the mixing is detrimental: the resampling alone is better!



Empirical verification
▪ Needs experiments:  we can’t predict when the mixing helps

▪ Overall effects:  sum of  vanilla mixup +  resampling

▪ Sometimes the mixing is detrimental: the resampling alone is better!

▪ With most datasets, the story is not so clear (mixup does help sometimes!)



Resampling is beneficial when there is a “regression towards the mean”

Testable predictions from the resampling effect

Class distribution trending

towards uniformity (0.5)

in the Wild-Time benchmark

Improvements correlate with the training/test distributions getting closer



Resampling is beneficial when there is a “regression towards the mean”

Testable predictions from the resampling effect

Class distribution trending

towards uniformity (0.5)

in the Wild-Time benchmark

Accidental property of existing datasets?   Risk of overfitting to the benchmarks!



▪ Detrimental effect if there’s a  “regression away from mean”
▪ Previously unknown limitation of selective mixup

▪ Verification: swapping training / test splits
▪ Indeed, good methods are now bad

This predicts a new failure mode



❗ Accidental finding from a different project

New method, meta learning mixup sampling/mixing coefficients

This finding was more interesting! 

💻 Performed on a single laptop:  shallow MLPs, cached pretrained features

❌ Rejected from NeurIPS “no new method”,   “only an ‘insights’ paper”

Why is it interesting?

▪ It corrects previous (incomplete) explanations

▪ It connect two areas of the literature: selective mixup / resampling

▪ In some cases, we found better combinations of the two

Behind the paper



Testing models/methods in- & out-of-distribution (2 test sets)

Is ID performance a good proxy for OOD generalization?

ID vs. OOD performance

Important for reliability
&  model selection

Purely an empirical question
(both can happen in principle)



Common finding/claim in the literature
Miller et al., Accuracy on the line: on the strong correlation between OOD and ID generalization, ICML 2021

Wenzel et al., Assaying out-of-distribution generalization in transfer learning, NeurIPS 2022

Angarano et al., Back-to-bones: Rediscovering the role of backbones in domain generalization, 2022

But it doesn’t match our observations!

WILDS-camelyon dataset;  1 point = 1 model;  various seeds & numbers of epochs;  ●: trained with ERM;  ●: trained with diversity regularizer

ID & OOD performance always correlated?!



More funny ID/OOD correlations

Wild-Time arXiv dataset

Inverse correlations across methods

and within each method (different seeds, hyperparameters, number of epochs)



Methodology of most studies:

1. Train models

2. Early stopping/model selection for best ID perf. 

3. Analyze only the selected models

Excludes a lot of data!

Why did prior work miss this?

Valid when ID/OOD are correlated.
The very thing we want to check!



Teney et al., ID and OOD Performance Are Sometimes Inversely Correlated on Real-world Datasets, NeurIPS 2023

This completely misses the
inverse correlations!

Our observations:

What prior studies would have observed:



📈 High OOD performance sometimes requires trading off ID performance. 

📉 Improving ID perf. alone may produce diminishing/negative returns OOD. 

🔍 Model selection using ID performance will miss the best OOD models. 

👍 Important to track multiple metrics (seems common now).

Implications for OOD generalization



High-level take-aways

Normalized gaming of a benchmark
for visual question answering

Plenty of room for scientific inquiry of existing methods

▪ Even established ones

▪ Even on a small scale

▪ No pressure to beat the SOTA

Methodological practices

▪ Question the assumptions

▪ Everyone does it           It’s the right thing to do

▪ Lookout for “overfitting to the benchmarks”

▪ Teney et al., On the value of out-of-distribution testing: An example of Goodhart’s law, NeurIPS 2020
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