Selective Mixup Helps with Distribution Shifts, But Not (Only) because of Mixup

Damien TeneyIdiap Research InstituteJindong WangMicrosoft Research AsiaEhsan AbbasnejadUniversity of Adelaide

We want ML models that generalize

Most models are not robust to distribution shifts.

Training data

Out-of-distribution test data

Selective mixup

- Popular class of methods
- Improve generalization with distribution shifts (consistent improvements on WILDS & Wild-Time benchmarks)

Yao et al., Improving out-of-distribution robustness via selective augmentation (LISA), ICLR 2022 Hwang et al., Selecmix: Debiased learning by contradicting-pair sampling, NeurIPS 2022 Li et al. Are data-driven explanations robust against out-of-distribution data?, 2023 Lu et al. Semantic discriminative mixup for generalizable sensor-based cross-domain activity recognition, 2022 Palakkadavath et al., Improving domain generalization with interpolation robustness, NeurIPS DistShift 2022 Tian et al., Cifair: Constructing continuous domains of invariant features for image fair classifications. KBS, 2023 Xu et al., Adversarial domain adaptation with domain mixup, AAAI 2020

- It does work, but not (only) because of mixup!
- It implicitly resamples the training data

How? Why does it help? Why did prior work miss it? How did we find out?

A bit of background: classical mixup

- Standard training: $\mathcal{L}(f_{\theta}(\boldsymbol{x}), \boldsymbol{y})$
 - Model f, training example x, label y, loss \mathcal{L}
- Training with mixup: $\mathcal{L}(f(c \mathbf{x}+(1-c)\widetilde{\mathbf{x}}), c \mathbf{y}+(1-c)\widetilde{\mathbf{y}}))$ • Mixing coefficient *c* (random or 0.5), paired examples (x, y)and (\tilde{x}, \tilde{y}) Picked at random

Zhang et al., mixup: Beyond empirical risk minimization, 2017

A bit of background: classical mixup

Improves generalization (even without distribution shifts) Very often. Not always. It rarely hurts.

Why does it work? 🤔

Regularization, augmentation, introduces label noise, helps learn rare features, ...

Selective mixup

- Idea: applying mixup on selected pairs, according to some criterion
- Many variants! Focus on LISA
- For data with domain labels: collected in different places, periods of time, ...

Key insight: Selective mixup implicitly resamples the data

With binary classification, it **perfectly** balances the classes!

Class A	Class B	1. Sample from original distribution	AAAB	Identical
75%	25%	2. Get pairs with "different class" criterion	ВВВА	proportions in aggregate

Key insight: Selective mixup implicitly resamples the data

- In general: makes distributions of features/classes more uniform ("regression towards the mean")
- Resampling/reweighting is a known baseline for label shift / imbalanced data
- Two unrelated methods are actually doing the same thing!

Why was this missed in prior work?

The missing ablation

Step 2: mix them

Why was this missed in prior work?

Step 2: mix them

Vanilla mixup

Why was this missed in prior work?

Missing ablation: build mini-batches with the sampled pairs, but no mixing!

Empirical verification

- Needs experiments: we can't predict when the mixing helps
- Overall effects: sum of vanilla mixup + resampling
- Sometimes the mixing is detrimental: the resampling alone is better!

Empirical verification

- Needs experiments: we can't predict when the mixing helps
- Overall effects: sum of **vanilla mixup** + **resampling**
- Sometimes the mixing is detrimental: the resampling alone is better!

• With most datasets, the story is not so clear (mixup <u>does help</u> sometimes!)

Testable predictions from the resampling effect

Resampling is beneficial when there is a "regression towards the mean"

Class distribution trending towards uniformity (0.5) in the Wild-Time benchmark

Improvements correlate with the training/test distributions getting closer

Distance between training/test distributions of inputs (top row; average cosine distance) and classes (bottom row; KL divergence)

Testable predictions from the resampling effect

Resampling is beneficial when there is a "regression towards the mean"

Class distribution trending towards uniformity (0.5) in the Wild-Time benchmark

Accidental property of existing datasets? Risk of overfitting to the benchmarks!

This predicts a new failure mode

- Detrimental effect if there's a "regression **away from** mean"
- Previously unknown limitation of selective mixup
- Verification: swapping training / test splits
- Indeed, good methods are now bad

Behind the paper

Accidental finding from a different project

New method, meta learning mixup sampling/mixing coefficients This finding was more interesting!

Performed on a single laptop: shallow MLPs, cached pretrained features

- **Rejected from NeurIPS** "no new method", "only an 'insights' paper" Why is it interesting?
- It corrects previous (incomplete) explanations
- It connect two areas of the literature: selective mixup / resampling
- In some cases, we found better combinations of the two

ID vs. OOD performance

Testing models/methods in- & out-of-distribution (2 test sets)

Is ID performance a good proxy for OOD generalization?

Important for reliability & model selection

Purely an empirical question (both can happen in principle)

ID & OOD performance always correlated?!

Common finding/claim in the literature

Miller et al., Accuracy on the line: on the strong correlation between OOD and ID generalization, ICML 2021

Wenzel et al., Assaying out-of-distribution generalization in transfer learning, NeurIPS 2022

Angarano et al., Back-to-bones: Rediscovering the role of backbones in domain generalization, 2022

But it doesn't match our observations!

WILDS-camelyon dataset; 1 point = 1 model; various seeds & numbers of epochs; •: trained with ERM; •: trained with diversity regularizer

More funny ID/OOD correlations

Inverse correlations across methods

and within each method (different seeds, hyperparameters, number of epochs)

Why did prior work miss this?

Methodology of most studies:

1. Train models

2. Early stopping/model selection for best ID perf.

3. Analyze only the selected models

Excludes a lot of data!

Valid when ID/OOD are correlated. The very thing we want to check!

Our observations:

What prior studies would have observed:

This completely misses the inverse correlations!

Teney et al., ID and OOD Performance Are Sometimes Inversely Correlated on Real-world Datasets, NeurIPS 2023

Implications for OOD generalization

High OOD performance sometimes requires trading off ID performance.

Improving ID perf. alone may produce diminishing/negative returns OOD.

• Model selection using ID performance will miss the best OOD models.

Important to track multiple metrics (seems common now).

High-level take-aways

Plenty of room for **scientific inquiry** of existing methods

- Even established ones
- Even on a small scale
- No pressure to beat the SOTA

Methodological practices

- Question the assumptions
- Everyone does it \Rightarrow It's the right thing to do
- Lookout for "overfitting to the benchmarks"

Teney et al., On the value of out-of-distribution testing: An example of Goodhart's law, NeurIPS 2020

Normalized gaming of a benchmark for visual question answering