Outliers with Opposing Signals Have an Outsized Effect on Neural Network Optimization

Elan Rosenfeld

Andrej Risteski

Deep Learning: Classics and Trends 1/26/2024

Slides template: Jeremy Bernstein

An incomplete list:

- Grokking

The Slingshot Mechanism: An Empirical Study of Adaptive Optimizers and the *Grokking Phenomenon*

 Etai Littwin
 Shuangfei Zhai

 elittwin@apple.com
 szhai@apple.com

Omid Saremi osaremi@apple.com Roni Paiss Joshua Susskind rpaiss@apple.com jsusskind@apple.com Boaz Barak Harvard University

z Barak Benjamin L. Edelman University Harvard University Surbhi Goel Microsoft Research & University of Pennsylvania

Sham Kakade Harvard University

Eran Malach Hebrew University of Jerusalem

Hidden Progress in Deep Learning: SGD Learns Parities Near the Computational Limit

> Cyril Zhang Microsoft Research

A TALE OF TWO CIRCUITS: GROKKING AS COMPETI-TION OF SPARSE AND DENSE SUBNETWORKS

William Merrill*, Nikolaos Tsilivis* & Aman Shukla New York University

- Grokking
- Benefits of Large LR

The Slingshot Mechanism: An Empirical S	tudy of 📃			
Vimal Thi vthilak@appl	INT ON OP AL NETWO	FIMIZATION RKS	N TRAJEC-	arning: utational Limit
Omid Saren osaremi@apple Stanisław Jastrzębski ¹ , Maciej Szyr Kyunghyun Cho ^{1,5,6*} , Krzysztof Ger	nczak ² , Stanislav Fe ras ^{1*}	D ort³, Devansh Arpi Harvard University F	t ⁴ , Jacek Tabor ² ,	Surbhi Goel ficrosoft Research & versity of Pennsylvania Cyril Zhang Microsoft Research
Towards Explaining the Regularization Effect of Initial Large Learning Rate in Training Neural Networks	IRCUITS: G	ROKKING A	S COMPETI-	
Yuanzhi Li Colin Wei Machine Learning Department Computer Science Department Carnegie Mellon University Stanford University vuanzhil@andrew.cmu.edu colinwe@betanford.edu Tengyu Ma Computer Science Department Stanford University colinwe@betanford.edu	HOW DO Vis* & NEURAL Kaichao You School of Solo Tsinghua Uni youkaicha	OES LEARNING NETWORKS? frware iversity o@gmail.com	G RATE DECAY Mingsher School of Tsinghua mingshe	HELP MODERN ng Long (ﷺ) Software University ang@tsinghua.edu.cn
tengyuma@stanford.edu	Jianmin Wa l School of Soi Tsinghua Uni jimwang@t	ng ftware iversity singhua.edu.cn	Michael 1 Departme University jordan(I . Jordan nt of EECS y of California, Berkeley ecs.berkeley.edu

- Grokking
- Benefits of Large LR
- Batchnorm

- Grokking
- Benefits of Large LR
- Batchnorm
- Hessian Spectrum Outliers

- Grokking
- Benefits of Large LR
- Batchnorm
- Hessian Spectrum Outliers
- Sharpening/EoS

An incomplete list:

- Grokking
- Benefits of Large LR
- Batchnorm
- Hessian Spectrum Outliers
- Sharpening/EoS
- Simplicity Bias

DEEP LEARNING GENERALIZES BECAUSE THE PARAMETER-FUNCTION MAP IS BIASED TOWARDS SIMPLE FUNCTIONS

Guillermo Valle Pérez University of Oxford guillermo.valle@dtc.ox.ac.uk

Ard A. Louis University of Oxford ard.louis@physics.ox.ac.uk

SELF-STABILIZATION: THE IMPL SINGUAS ENT DESCENT AT THE EDGE OF STABILITAN Towards Explaining the Regularization Filistent Sagur Alnitial Large Learning Rate in Technology Invanishing Princeton University Network and In No. New York Mark

loes Hiefshchicall Salia	eation Help O	ptimization?
ctrum of Deepnet Hess	ians oress in Deen	Learning:
Delrajectory: TION	TRAJEC-	montational Limit
dge of Stability Tsipras*	Andrew Ilyas*	Aleksander Mądry
MIT mit.edu tsipras@mit.edu	MIT ailyas@mit.edu	MIT madry@mit.edu
		Surbhi Goel
Zixuan Wang and University	Harvard University of 2	Microsoft Research & University OPPonty Vana.
0190123260gmail.com Sham Kakade	Eran Malach	Cyril Zhang

SGD on Neural Networks Learns Functions of Increasing Complexity

Yuanzhi Li Machine Learning Department Carnegie Mellon University yuanzhi1@andrew.cmu.edu	Ping Luonation Pinese P	njiang Wang Fständing G	Preetum Nakkiran Harvard University	Gal Kaplun Harvard University	Dimitris Kalimeris Harvard University	Tristan Yang Harvard University
The Anisotropic Noise	n, Stochastic Gi	radient Des	Benjamin L. Ed Harvard Unive	elman Fre rsity Harvar	e d Zhang rd University F	Boaz Barak Iarvard University
The Pitfalls of Simplici	ty Bias in Ne	ural Network	s ren Mattsing	Senefit of eduction	Michael I. Department University of jordan@c	ordan of EECS f California, Berkeley s.berkeley.edu
Harshay Shah Ka Microsoft Research Mid harshay.rshah@gmail.com ktam	austav Tamuly crosoft Research uly2@gmail.com	Aditi Raghunathan Stanford University aditir@stanford.ee	te Maile Pervade 1 au Sapes Aror	gæa æoss-Class Deep Learning S a	Structure pectra	
Prateek Jain Microsoft Research prajain@microsoft.com	Praneet Microso praneeth@m	h Netrapalli ft Research hicrosoft.com	ics inceton.ed USA			

Chico Q. Camargo

University of Oxford

- Grokking
- Benefits of Large LR
- Batchnorm
- Hessian Spectrum Outliers
- Sharpening/EoS
- Simplicity Bias
- Adaptive Methods

DEEP LEARNING GENERALIZES PARAMETER-FUNCTION MAPARET INCOMPARIANCE AND A CONTRACT OF A	Understanding Why Adam Converges Faster Than SGD for Transformers
Guillermo Valle Pérez University of Oxton Hulan guillermo Valle Pérez University of Oxton Hulan guiller holovanzale de CORIES Offen Diss Carnegie Mellovanzale de Corregio Mellovanzale de Corregio Mellovanzale de Corregio Mellovanza de Corregio Mellovan	YPAN2@ANDREW.CMU.EDU YUANZHIL@ANDREW.CMU.EDU Ion University
Ard A. Loffenid Saremi Roni Paiss Joshua Sus Halman Sarepi Sarepi Sarepi Arcedon Why are Adaptive Methods Good for Attention Models?	skind Boaz Barak Benjamin L. Edelman Surbhi Goel Microsoft Research & Learning Constraints of the state of th
Jingzhao Zhang MT Sai Praneeth Karimireddy EFFL Andreas Veit Google Research avsit@google.com Seungyeon Kim Google Research seungyeonk@google.com Sashank Reddi Google Research sashank@gogle.com Sanjiv Kumar Google Research sanjivk@google.com Swrit Sra MIT suvrit@mit.edu Suvrit@mit.edu	Signalization Signalization Department Signalization Display Dimitris Kalimeris Preference Tristan Yang Fred That Signalization School of yoofware Signalization School of yoofware Signalization Signalization Fred Zhang
The Pitfalls of Simple Zhanin	THE MAIN FACTOR BEHIND THE GAP
Between SGI Between SGI SIGN DESCEN	r Might Be
ChaoPháteck IniDaniel Microsoft Research prajain@microsoft.com	ques Chen, J. Wilder Lavington & Mark Schmidt [†] umbia, Canada CIFAR AI Chair (Amii) [†]

- Grokking
- Benefits of Large LR
- Batchnorm
- Hessian Spectrum Outliers
- Sharpening/EoS
- Simplicity Bias
- Adaptive Methods
- Unstable Training

An incomplete list:

- Grokking
- Benefits of Large LR
- Batchnorm
- Hessian Spectrum Outliers
- Sharpening/EoS
- Simplicity Bias
- Adaptive Methods
- Unstable Training
- Double Descent

Surely, *some* of these results are related... but unclear how.

Progressive Sharpening + Edge of Stability

Meanwhile, loss decreases non-monotonically, with frequent "spikes". "Sharpness" = top eigenvalue of loss Hessian First rises to $2/\eta$... Then hovers around that value.

[1] Gradient Descent on Neural Networks Typically Occurs at the Edge of Stability. Cohen et al. 2020.

Progressive Sharpening + Edge of Stability

This is just more evidence that **something more is needed** to understand NN training dynamics...

[1] Gradient Descent on Neural Networks Typically Occurs at the Edge of Stability. Cohen et al. 2020.

Yet Another Phenomenon

I'm going to present our finding: *another* interesting phenomenon in neural network optimization.

But the goal is not just to add to the growing list.

Instead, we hope it can help explain and unify these observations via a **shared underlying cause**.*

Yet Another Phenomenon

Let's run the following experiment:

1. Train a neural network with full-batch gradient descent on CIFAR-10.

(We also look at SGD)

- 2. Track losses on each training point *individually*.
- 3. Fix some iteration *T*.
- 4. Calculate changes in loss on each point from step *T* to step *T*+1.
- 5. Visualize the samples with the *most positive* and *most negative* changes.

What should we expect to see?

Yet Another Phenomenon

VGG-11

ResNet-18

The precise patterns change, but this occurs all throughout training.

These groups are ~20 samples each.

Samples were selected for largest change in loss, so we expect a "spike" somewhere.

These opposing groups oscillate with large amplitude *continuously*!

What about another group?

When we're close to interpolating, shouldn't this effect be reduced?

Yes, the amplitude is substantially smaller... So what's causing these loss increases?

Even at the end stages of training, large loss swings are still occurring.

What's Going On?

- Prevalent features, often with distinct colors.
 - Roughly, "prevalent" \approx "fills a lot of the image"
- Begin simple, become progressively more complex.
 - "Simple" \approx "available at random initialization"
- Large gradients pointing in **opposite directions**.
 - Learning "red = car" decreases loss on red cars, increases loss on red *non*-cars

We call these features—or the gradients they induce—*Opposing Signals*.

What's Going On?

Does this occur for *every* training sample?

Distribution of changes in loss:

These samples are *significant* outliers.

Is this a property of architecture (ConvNet)?

No. Same occurs in a Vision Transformer.

amplane	aimtane	aimiane	airplane	aiplane	airplane	aimtane	aiplane
plane-ship	plane-ship		plane-ship		kip-Hip	plane-Hip	plans-Hotep
aimlane	aimlane	aimlane	aimlane	aimlane	aimlane	aimlane	aimlane
Plane-ship	stap-stap	Plane-ship	Park-ship	hip-sip	plane-ship	plane-ship	ship-ship
aimlanc	aimlane	aimlane	aimtane	aimlane	aimtane	aiplane	aiplane
plans-ship		Hip-Hrack	<mark>≫5</mark> _{stip→stip}	www. wip→stip	stip-stip	plane-ship	karaka karaka
truck	truck	automobile	automobile	truck	automobile	automobile	truck
truck	truck	automobile	automobile	truck	automobile	automobile	truck
truck	truck	automobile plane-struck	automobile	truck	automobile plane-suto sutomobile	automobile	truck
truck	truck	automobile plane-truck truck	automobile plane-sato automobile	truck	automobile plans-auto automobile plans-auto	automobile plane-track automobile	truck
truck plans-auto automobile plans-auto plans-auto automobile	truck	automobile planetrack truck planesouto truck	automobile plane-sato automobile plane-sato truck	truck	automobile plans-auto automobile plans-auto plans-auto	automobile plane-track automobile plane-sato automobile	truck

Maybe it's a property of the data modality (images)?

Also no.

Group 2

MPs in Westminster. But to me it is obvious: [the] The wheelset is the same as that on the model above: [the]

all other acts of love, both divine and human: [the] from the Kurds' two main political parties: [the] title of precisely what makes it so wonderful: [the] you no doubt noticed something was missing: [the]

GPT-2 on OpenWebText

(bracket is next token)

Maybe it's a property of the data modality (images)?

Also no.

What about the loss (cross-entropy)?

Remainder of this talk gives our current best understanding, with experiments. We believe it a consequence of *depth* and *steepest descent*.

We don't fully understand the mechanism here.

- If there are parts you think aren't fully explained, you're right.
- If there are parts you think are *flat out wrong*, you could be right.

However:

- We have a reasonably descriptive high-level story...
 - and we prove this behavior for a simple model on a 2-layer linear net. *
- It enables *specific* qualitative predictions which we then verify...
 - and it naturally fits into several existing narratives of other phenomena.

A Simplified Story of Gradient Descent on Deep Neural Networks

Consider a randomly initialized MLP with two input features:

- 1. "Sky": large magnitude + pervasive (propagated to all neurons).
 - Only sufficient for predicting p(class | "sky").
- 2. "Shape": small magnitude, needs to be learned.
 - But much more useful for loss reduction.

At initialization, network activations are dominated by "sky" on outliers.

(Suppose network happens to predict "sky = plane")

High loss \rightarrow large gradients \rightarrow rebalance towards predicting p(class | "sky").

- (This "linear first" behavior has been previously observed^[1, 2])

[2] Do deep neural networks learn shallow learnable examples first? Mangalam and Prabhu 2019.

Once this happens, the network can now upweight the more useful "shape" feature. Since the outliers' loss no longer dominates the gradient, let's visualize a non-outlier.

Once this happens, the network can now upweight the more useful "shape" feature. Since the outliers' loss no longer dominates the gradient, let's visualize a non-outlier.

As training progresses, the top singular vectors of adjacent layers align to amplify meaningful subspaces. ^[3, 4]

This is how the "shape" feature gets upweighted.

[4] Unique properties of flat minima in deep networks. Muyaloff and Michaeli, 2020.

As training progresses, the top singular vectors of adjacent layers align to amplify meaningful subspaces. ^[3, 4]

This is how the "shape" feature gets upweighted.

[4] Unique properties of flat minima in deep networks. Muyaloff and Michaeli, 2020.

This alignment has been continuously upweighting the more useful signal.

[4] Unique properties of flat minima in deep networks. Muyaloff and Michaeli, 2020.

I've left one important part out of this visualization:

When "shape" is amplified, "sky" is amplified too.

This is the activation pattern for a *non-outlier*.

What would it look like for an outlier with a sky background?

I've left one important part out of this visualization:

When "shape" is amplified, "sky" is amplified too.

Because it is larger + more pervasive, it still dominates the network's activations.

- Small, targeted change to predict one group massively increases loss on the other.

In other words, loss on outliers becomes very sharp w.r.t. parameters.

- ("growth in sensitivity" was previously noted, e.g. weight/Jacobian norm^[5, 6])

This story is pretty abstract.

Let's visualize something more concrete:

The (hypothetical) loss in a 1D parameter space.

Sensitivity to how we use the sky feature grows.

Hence, the loss **sharpens** along this direction.

What happens when norm of "sky" grows?

 $p(plane | sky) \approx 1$

Direction in Parameter Space

 $p(\text{other} | \text{sky}) \approx 1$

Here, losses are balanced. So are opposing *gradients*.

Feature growth continues.

 $p(plane | sky) \approx 1$

Direction in Parameter Space

 $p(\text{other} | \text{sky}) \approx 1$

Here, losses are imbalanced. But outliers still have small

influence on overall gradient.

 $p(plane | sky) \approx 1$

Direction in Parameter Space

 $p(plane | sky) \approx 1$

Direction in Parameter Space

 $p(\text{other} | \text{sky}) \approx 1$

The value of a theory (even a non-rigorous one) is in its ability to make predictions.

So far we've described:

- 1. Initial phase of fitting a "linear" model. ← (previously observed)
- 2. Growth in activation magnitude among images with this feature. ← (least well understood)
- 3. Upon reaching Edge of Stability, predictions oscillate between "sky = plane" and "sky = other".
- 4. Oscillation results in shrinking of activation magnitude.

What does this story imply, *behaviorally*? Can we test it more directly?

To avoid confounders, we'll pass a pure "sky" image through a ResNet-18.

(Doesn't happen as cleanly for all archs/colors, but it's pretty consistent.)

Oscillation seems valuable for downweighting the "simple" but "incomplete" features.

- Gradient Flow doesn't oscillate. Maybe that's part of why it generalizes poorly?

Does this Occur for SGD?

Long story short, Yes.

Alternations are not every step.

Groups are not always opposite.

Opposing Signals have clear *potential* connections to existing tools in stochastic optimization, for both training speed and generalization:

- Batch Normalization
- Adaptive Gradient Methods
- Sharpness-Aware Minimization
- Large Initial Learning Rate

Maybe these methods work because of how they handle Opposing Signals?

- Could this help us design new improvements to SGD?

Lots of unanswered questions. Very happy to discuss further.

> Outliers with Opposing Signals Have an Outsized Effect on Neural Network Optimization

Elan Rosenfeld & Andrej Risteski https://arxiv.org/abs/2311.04163

Implications for Stochastic Optimization

A Case Study of Adam vs. SGD

