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Surely, some of these results are related... but unclear how.



Progressive Sharpening + Edge of Stability
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Meanwhile, loss decreases ~ “Sharpness” = top eigenvalue of loss Hessian
non-monotonically, with First rises to 2/j...
frequent “spikes”. Then hovers around that value.

[1] Gradient Descent on Neural Networks Typically Occurs at the Edge of Stability. Cohen et al. 2020.



Progressive Sharpening + Edge of Stability
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This is just more evidence that something more
is needed to understand NN training dynamics...

[1] Gradient Descent on Neural Networks Typically Occurs at the Edge of Stability. Cohen et al. 2020.



Yet Another Phenomenon

I’m going to present our finding:

another interesting phenomenon in neural network optimization.

But the goal is not just to add to the growing list.

Instead, we hope it can help explain and unify

. . . &
these observations via a shared underlying cause.



Yet Another Phenomenon
(We also look at SGD)

Let’s run the following experiment: /

Train a neural network With[full—batch gradient descent]on CIFAR-10.
Track losses on each training point individually.

Fix some iteration T.

Calculate changes in loss on each point from step T to step T+1.
Visualize the samples with the most positive and most negative changes.

VIS W N R

What should we expect to see?



Yet Another Phenomenon
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The precise patterns change, but this occurs all throughout training.



Visualizing the Group Losses

These groups are ~20 samples each.

Resnet-18 with Gradient Descent on CIFAR-10 Background Color
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Samples were selected for largest change in loss, so we expect a “spike” somewhere.



Visualizing the Group Losses

Resnet-18 with Gradient Descent on CIFAR-10
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These opposing groups oscillate with large amplitude continuously!



Visualizing the Group Losses

Resnet-18 with Gradient Descent on CIFAR-10 Background Color
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What about another group?



Visualizing the Group Losses

Resnet-18 with Gradient Descent on CIFAR-10
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When we’re close to interpolating, shouldn’t this effect be reduced?



Visualizing the Group Losses

Lots of Red

Resnet-18 with Gradient Descent on CIFAR-10 Background Color
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Yes, the amplitude is substantially smaller...

So what’s causing these loss increases?



Visualizing the Group Losses
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Visualizing the Group Losses

Resnet-18 with Gradient Descent on CIFAR-10
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Even at the end stages of training, large loss swings are still occurring.



What’s Going On?
- Prevalent features, often with distinct colors.

- Roughly, “prevalent” = “fills a lot of the image”

- Begin simple, become progressively more complex.

) ~

“Simple available at random initialization”

- Large gradients pointing in opposite directions.
- Learning “red = car” decreases loss on red cars, increases loss on red non-cars

We call these features—or the gradients they induce—Opposing Signals.

ChatGPT’s best alternative suggestion: Backprop Battle



What’s Going On?

Does this occur for every training sample?
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These samples are significant outliers.



What Causes Opposing Signals?

Is this a property of architecture (ConvNet)?

No. Same occurs in a Vision Transformer.
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What Causes Opposing Signals?

Maybe it’s a property of the data modality (images)?

Also no.

4 Group 1 A
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Enter your email address: [\n]
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GPT-2 on OpenWebText




What Causes Opposing Signals?

Maybe it’s a property of the data modality (images)?
Also no.

What about the loss (cross-entropy)?
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What Causes Opposing Signals?

Remainder of this talk gives our current best understanding, with experiments.
We believe it a consequence of depth and steepest descent.

We don’t fully understand the mechanism here.

- If there are parts you think aren’t fully explained, you’re right.

- If there are parts you think are flat out wrong, you could be right.

However:
- We have a reasonably descriptive high-level story...

- and we prove this behavior for a simple model on a 2-layer linear net.”

- It enables specific qualitative predictions which we then verify...
- and it naturally fits into several existing narratives of other phenomena.



A Simplified Story of
Gradient Descent
on Deep Neural Networks




Consider a randomly initialized MLP with two input features:

1. ‘“Sky”:large magnitude + pervasive (propagated to all neurons).
- Only sufficient for predicting p( class | “sky” ).

2. “Shape”: small magnitude, needs to be learned.
- But much more useful for loss reduction.
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At initialization, network activations are dominated by “sky” on outliers.
- (Suppose network happens to predict “sky = plane”)

High loss - large gradients - rebalance towards predicting p( class | “sky” ).
- (This “linear first” behavior has been previously observed™ 2!)

Planes with Non-planes

“gky” with “Sky” No sky
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[1] SGD on Neural Networks Learns Functions of Increasing Complexity. Nakkiran et al. 2019.
[2] Do deep neural networks learn shallow learnable examples first? Mangalam and Prabhu 2019.
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Loss

Once this happens, the network can now upweight the more useful “shape” feature.

Since the outliers’ loss no longer dominates the gradient, let’s visualize a non-outlier.
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Loss

Once this happens, the network can now upweight the more useful “shape” feature.

Since the outliers’ loss no longer dominates the gradient, let’s visualize a non-outlier.
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As training progresses, the top singular vectors of adjacent layers align to amplify
meaningful subspaces. 134!

This is how the “shape” feature gets upweighted.
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[3] Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. Saxe et al. 2013
[4] Unique properties of flat minima in deep networks. Muyaloff and Michaeli, 2020.



As training progresses, the top singular vectors of adjacent layers align to amplify
meaningful subspaces. 134!

This is how the “shape” feature gets upweighted.
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[3] Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. Saxe et al. 2013
[4] Unique properties of flat minima in deep networks. Muyaloff and Michaeli, 2020.



This alignment has been continuously upweighting the more useful signal.
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[3] Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. Saxe et al. 2013
[4] Unique properties of flat minima in deep networks. Muyaloff and Michaeli, 2020.
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Loss

, : o e
I’ve left one important part out of this visualization: W56 s e vttt o

When “shape” is amplified, “sky” is amplified too. 2 OGN,
What would it look like for an
outlier with a sky background?
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Loss

I’ve left one important part out of this visualization:

When “shape” is amplified, “sky” is amplified too.
Because it is larger + more pervasive, it still dominates the network’s activations.
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Loss

This causes large sensitivity to small changes in how the network uses “sky”.
- Small, targeted change to predict one group massively increases loss on the other.

Small change to weights
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Loss

This causes large sensitivity to small changes in how the network uses “sky”.
- Small, targeted change to predict one group massively increases loss on the other.

Changes how feature
propagates...
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Loss

This causes large sensitivity to small changes in how the network uses “sky”.
- Small, targeted change to predict one group massively increases loss on the other.

Which gets further
magnified
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Loss

This causes large sensitivity to small changes in how the network uses “sky”.
- Small, targeted change to predict one group massively increases loss on the other.
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This causes large sensitivity to small changes in how the network uses “sky”.
Small, targeted change to predict one group massively increases loss on the other.

In other words, loss on outliers becomes very sharp w.r.t. parameters.
(“growth in sensitivity” was previously noted, e.g. weight/Jacobian norm!5 67)
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[5] On linear stability of sgd and input-smoothness of neural networks. Ma and Ying, 2021.
[6] On the lipschitz constant of deep networks and double descent. Gamba et al. 2023.



This story is pretty abstract.
Let’s visualize something more concrete:

The (hypothetical) loss in a 1D parameter space.

4"_'_'_'_'_'_'?',_', __________________ S
p(plane | Sky) ~1 Direction in Parameter Space p(other | sky) ~1
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\ Eventually, sharpness crosses step gize
\ : .
\ threshold, and iterates begin to gll(ferge!
S ‘Loss on images withé \ I 4
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p(plane | sky) ~1 Direction in Parameter Space P( sinee | sky) ~1



“catapult” / “slingshot”

/
/

[ How far does this continue? ] /
/

Why should it
go back down?
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p(plane | sky) ~1 Direction in Parameter Space P( sinee | sky) ~1



Here, losses are balanced.

So are opposing gradients.

p(plane | sky) ~1 Direction in Parameter Space P( sinee | sky) ~1



Here, losses are imbalanced. /

But outliers still have small

influence on overall gradient.

p(plane | sky) ~1 Direction in Parameter Space P( sinee | sky) ~1



Here, gradient on plane dominates.

Two ways to decrease loss:

1. Use feature differently.
2. Downweight feature.

Valley flattens, we descend again.

p(plane | sky) ~1 Direction in Parameter Space P( sinee | sky) ~1



Experimental Verification

The value of a theory (even a non-rigorous one) is in its ability to make predictions.

So far we’ve described:
1. [Initial phase of fitting a “linear” model. <« (previously observed)
2. Growth in activation magnitude among images with this feature. <« (least well understood)
3. Upon reaching Edge of Stability, predictions oscillate between
“sky = plane” and “sky = other”.
4. Oscillation results in shrinking of activation magnitude.

What does this story imply, behaviorally? Can we test it more directly?



Experimental Verification

To avoid confounders, we’ll pass a pure “sky” image through a ResNet-18.

Input Image

plane
auto
bird
cat
deer
dog
frog
horse
ship
truck

Smooth initial _
“linear” phase Then, logit
oscillations

\ cm%

Growth in embedding
norm increases sharpness

Logit Value

Class Probabilities During Oscillation { Feature Norm
Iter 27 Iter 28

— InputImage

0 100 200 300 400 500
Iteration

204 — Mean Over Data
_I.-...-.-.-E.-_l 151

E

5

Z.

Iter 29 Iter 30
10
B_ER.= 5 /
o / 1000 2000 3000 4000 5000
Iteration
Slow decay during
Sky = other Sky = plane OSClHatIOI’l

(and a bit ship)



£
H
.?
£

HERRERRNN

FEEEEETTT

Experimental Verification

Logit Value

Logit Value

Class Logits

Class Probabilities During Oscillation

(Doesn’t happen as cleanly for all archs/colors, but it’s pretty consistent.)
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Experimental Verification

Oscillation seems valuable for downweighting the “simple” but “incomplete” features.

- Gradient Flow doesn’t oscillate. Maybe that’s part of why it generalizes poorly?

Input Imdge Class Logits I_ _____ Fe?ure N_orm _____ I
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Does this Occur for SGD?

VGG-11 SGD Loss on Opposing Groups

Long story short, Yes.
=== Full Train Loss
o Group 1 4 -
—— Group 2
== Random Subset 3
3 24 2
Alternations are not every step. L1 11
0 . 0
4 -
Groups are not always opposite. =
S 21
1 -
0 1 I I 1 I 0 1 1 1 1 I
160 180 200 220 240 160 180 200 220 240

Iteration Iteration



Opposing Signals have clear potential connections to existing tools in
stochastic optimization, for both training speed and generalization:

- Batch Normalization

- Adaptive Gradient Methods

- Sharpness-Aware Minimization
- Large Initial Learning Rate

Maybe these methods work because of how they handle Opposing Signals?
- Could this help us design new improvements to SGD?

Lots of unanswered questions.
Very happy to discuss further.

Outliers with Opposing Signals Have an Outsized
Effect on Neural Network Optimization

Elan Rosenfeld & Andrej Risteski
https://arxiv.org/abs/2311.04163




Implications for
Stochastic Optimization




A Case Study of Adam vs. SGD

Projection on Top Eigenvector
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