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LMs are typically autoregressive:

🤖
Input x Output yLM pθ

θ - parameters

pθ(y|x) =
∏L

l=1
pθ(yl|x,y≤l−1)

softmax is used for producing 
next-token probabilities



Supervised Finetuning of LMs
2 / 18

LMs are adapted to human preferences and downstream tasks via finetuning



Supervised Finetuning of LMs
2 / 18

Supervised Finetuning (SFT)

LMs are adapted to human preferences and downstream tasks via finetuning

Minimize cross entropy loss over labeled inputs via gradient-based methods



Supervised Finetuning of LMs
2 / 18

Supervised Finetuning (SFT)

LMs are adapted to human preferences and downstream tasks via finetuning

Minimize cross entropy loss over labeled inputs via gradient-based methods

D(·|x)outputs sampled from conditional distribution



Supervised Finetuning of LMs
2 / 18

Supervised Finetuning (SFT)

LMs are adapted to human preferences and downstream tasks via finetuning

Minimize cross entropy loss over labeled inputs via gradient-based methods

Expected loss for input     : x Lθ(x) = Ey∼D(·|x) [− ln pθ(y|x)]

D(·|x)outputs sampled from conditional distribution



Supervised Finetuning of LMs
2 / 18

Supervised Finetuning (SFT)

LMs are adapted to human preferences and downstream tasks via finetuning

Minimize cross entropy loss over labeled inputs via gradient-based methods

Expected loss for input     : x Lθ(x) = Ey∼D(·|x) [− ln pθ(y|x)]

Limitations:

D(·|x)outputs sampled from conditional distribution



Supervised Finetuning of LMs
2 / 18

Supervised Finetuning (SFT)

LMs are adapted to human preferences and downstream tasks via finetuning

Minimize cross entropy loss over labeled inputs via gradient-based methods

Expected loss for input     : x Lθ(x) = Ey∼D(·|x) [− ln pθ(y|x)]

Limitations:

Hard to formalize human preferences through labels

D(·|x)outputs sampled from conditional distribution



Supervised Finetuning of LMs
2 / 18

Supervised Finetuning (SFT)

LMs are adapted to human preferences and downstream tasks via finetuning

Minimize cross entropy loss over labeled inputs via gradient-based methods

Expected loss for input     : x Lθ(x) = Ey∼D(·|x) [− ln pθ(y|x)]

Limitations:

Hard to formalize human preferences through labels

Labeled data is expensive

D(·|x)outputs sampled from conditional distribution
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Maximize reward over unlabeled inputs via policy gradient algorithms

Expected reward for input     : x Vθ(x) = Ey∼pθ(·|x) [r(x,y)]

Reinforcement Finetuning (RFT)

reward function r(x,y)

Reward function                  can be:     r(x,y)

Limitations of SFT led to wide adoption of a reinforcement learning-based approach
(e.g.  Ziegler et al. 2019, Stiennon et al. 2020, Ouyang et al. 2022, Bai et al. 2022, Dubois et al. 2023, Touvron et al. 2023)

Learned from human preferences Tailored to a downstream task



Main Contributions: Vanishing Gradients in RFT
4 / 18



Main Contributions: Vanishing Gradients in RFT

∇θVθ(x) ≈ 0
Fundamental vanishing gradients
problem in RFT

4 / 18



Main Contributions: Vanishing Gradients in RFT

∇θVθ(x) ≈ 0
Fundamental vanishing gradients
problem in RFT

Vanishing gradients are prevalent 
and harm ability to maximize reward

4 / 18



Main Contributions: Vanishing Gradients in RFT

∇θVθ(x) ≈ 0
Fundamental vanishing gradients
problem in RFT

Vanishing gradients are prevalent 
and harm ability to maximize reward

Exploring ways to overcome vanishing 
gradients in RFT

4 / 18



Main Contributions: Vanishing Gradients in RFT

Fundamental vanishing gradients
problem in RFT

Vanishing gradients are prevalent 
and harm ability to maximize reward

Exploring ways to overcome vanishing 
gradients in RFT

∇θVθ(x) ≈ 0

4 / 18



— reward std of      under the model xSTDy∼pθ(·|x)[r(x,y)]

5 / 18

Vanishing Gradients Due to Small Reward Standard Deviation (STD)



— reward std of      under the model xSTDy∼pθ(·|x)[r(x,y)]

Theorem

∥∇θVθ(x)∥ = O
(

STDy∼pθ(·|x)[r(x,y)]
2/3)

*Same holds for PPO gradient

5 / 18

Vanishing Gradients Due to Small Reward Standard Deviation (STD)



— reward std of      under the model xSTDy∼pθ(·|x)[r(x,y)]

Theorem

∥∇θVθ(x)∥ = O
(

STDy∼pθ(·|x)[r(x,y)]
2/3)

Expected gradient for an input 
vanishes when reward std is small, 
even if reward mean is suboptimal

*Same holds for PPO gradient

5 / 18

Vanishing Gradients Due to Small Reward Standard Deviation (STD)



— reward std of      under the model xSTDy∼pθ(·|x)[r(x,y)]

Theorem

∥∇θVθ(x)∥ = O
(

STDy∼pθ(·|x)[r(x,y)]
2/3)

Expected gradient for an input 
vanishes when reward std is small, 
even if reward mean is suboptimal

*Same holds for PPO gradient

Proof Idea: Stems from use of softmax + reward maximization objective

5 / 18

Vanishing Gradients Due to Small Reward Standard Deviation (STD)



— reward std of      under the model xSTDy∼pθ(·|x)[r(x,y)]

Theorem

∥∇θVθ(x)∥ = O
(

STDy∼pθ(·|x)[r(x,y)]
2/3)

Expected gradient for an input 
vanishes when reward std is small, 
even if reward mean is suboptimal

Note: Bound applies to expected gradients of individual inputs (as opposed to of batch/population)

*Same holds for PPO gradient

Proof Idea: Stems from use of softmax + reward maximization objective

5 / 18

Vanishing Gradients Due to Small Reward Standard Deviation (STD)



— reward std of      under the model xSTDy∼pθ(·|x)[r(x,y)]

Theorem

∥∇θVθ(x)∥ = O
(
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2/3)

Expected gradient for an input 
vanishes when reward std is small, 
even if reward mean is suboptimal

Note: Bound applies to expected gradients of individual inputs (as opposed to of batch/population)

*Same holds for PPO gradient

Can be problematic when finetuning text distribution differs from pretraining

Proof Idea: Stems from use of softmax + reward maximization objective
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Large output space in language generation 

Q: Does the difficulty of RFT to maximize reward stem from 
vanishing gradients or just insufficient exploration?

∇θVθ(x)

(e.g. Ranzato et al. 2016, Choshen et al. 2020)

We address Q via controlled experiments and theoretical analysis

challenge of accurately estimating
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small reward std despite perfect exploration
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Inadequacy of Common Heuristics

Vanishing gradients in RFT are resilient to common heuristics:

• Increasing learning rate

• Adding temperature to logits

• Entropy regularization

Results: As expected, no improvement to the reward of RFT

❌Expected to help?

14 / 18



Inadequacy of Common Heuristics

Dataset: NarrativeQA
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Initial SFT Phase Mitigates Vanishing Gradients in RFT

Common practice is to perform initial SFT phase before RFT (e.g. Ouyang et al. 2022)

Observation – Initial SFT phase reduces number of inputs with small reward std

Importance of SFT in RFT pipeline: mitigates vanishing gradients

NarrativeQA
(train)
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to be expensive!
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