Algorithms to estimate Shapley value feature attributions

Hugh Chen

Why explain models?

- What are Shapley values?
- What are Shapley value explanations?
- Challenge 1: Feature removal approaches
- Challenge 2: Tractable estimation strategies

Machine learning (ML) is increasingly widespread

Increasing regulatory desire for explanations

General Data Protection Regulation (2018)

"[the data subject should have] the **right ... to obtain an explanation** of the decision reached"

Equal Credit Opportunity Act (1974)

"The statement of reasons for adverse action ... must be specific and **indicate the principal reason(s) for the adverse action**"

Many types of explanations

Concept explanations

Counterfactuals Composite image Query image **Distractor image Eared Grebe** Horned Grebe

Olive sided Flycatcher

Myrtle Warbler

Goyal, Yash, et al. "Counterfactual visual explanations." International Conference on Machine Learning. PMLR, 2019.

Local feature attributions

Baseline $x^b \in \mathbb{R}^d$

https://github.com/slundberg/shap

attribution?

- Why explain models?
- What are Shapley values?
- What are Shapley value explanations?
- Challenge 1: Feature removal approaches
- Challenge 2: Tractable estimation strategies

The Shapley value

A unique credit allocation of the total surplus of a coalitional game among the game's players.

The Shapley value

A unique credit allocation of the total surplus of a coalitional game among the game's players.

Definition of the Shapley value

Notation:

- Players are $D = \{1, \dots, d\}$
- Coalitional game is $v(S): 2^D \to \mathbb{R}$

- Why explain models?
- What are Shapley values?
- What are Shapley value explanations?
- Challenge 1: Feature removal approaches
- Challenge 2: Tractable estimation strategies

Shapley value feature attributions

Shapley value explanations

- We will review many techniques and algorithms to estimate Shapley value explanations
 - First, we will define two factors of complexity

Chen, Hugh* and Covert, Ian* and Lundberg, Scott and Lee, Su-In. "Algorithms to estimate Shapley value feature attributions." *Nature Machine Intelligence* 2023.

Ian Covert

Scott Lundberg

Factor of complexity 1 Feature removal approach

- The original paper on Shapley value explanations proposed SHAP values
- They were shown to be a unique solution in the class of additive feature attribution methods based on a set of axioms
- However, its uniqueness depends on defining a coalitional game based on the model
- This has led to distinct Shapley value explanations that differ in how they remove features

Chen, Hugh* and Covert, Ian* and Lundberg, Scott and Lee, Su-In. "Algorithms to estimate Shapley value feature attributions." Nature Machine Intelligence 2023.

Define

v(S)

Factor of complexity 2Calculate $\phi(v)$ Tractable estimation strategy

- Calculating Shapley values is, in the general case, an NP-hard problem
- The original SHAP paper discussed strategies to estimate Shapley values
 - Model-agnostic KernelSHAP
 - Model-specific LinearSHAP, MaxSHAP, DeepSHAP
- Since then, many new algorithms have been proposed

Chen, Hugh* and Covert, Ian* and Lundberg, Scott and Lee, Su-In. "Algorithms to estimate Shapley value feature attributions." Nature Machine Intelligence 2023.

Why review this literature?

- These two factors of complexity have led to an abundance of papers and algorithms
- Coupled with the complexity of the topic the literature has become difficult to navigate

3	Factors of complexity			Properties		
Method	Estimation strategy	Removal approach	Removal variant	Model- agnostic	Bias-free	Variance- free
ApproSemivalue [30]	SV	None	Exact	Yes	Yes	No
L-Shapley [26]	SV	Marginal	Empirical	Yes	No	No
C-Shapley [26]	SV	Marginal	Empirical	Yes	No	No
ApproShapley [30]	RO	None	Exact	Yes	Yes	No
IME [27]	RO	Marginal	Empirical	Yes	Yes	No
CES [22]	RO	Conditional	Empirical	Yes	No	No
Shapley cohort refinement [53]	RO	Conditional	Empirical*	Yes	No	No
Generative model [50]	RO	Conditional	Generative	Yes	No	No
Surrogate model [50]	RO	Conditional	Surrogate	Yes	No	No
Multilinear extension sampling [31]	ME	Marginal	Empirical	Yes	Yes^{\diamond}	No
SGD-Shapley [54]	WLS	Baseline	Exact	Yes	No^{\heartsuit}	No
KernelSHAP [15, 52]	WLS	Marginal	Empirical	Yes	Yes♠	No
Parametric KernelSHAP [49]	WLS	Conditional	Parametric	Yes	No	No
Nonparameteric KernelSHAP [49]	WLS	Conditional	$Empirical^*$	Yes	No	No
FastSHAP [32]	WLS	Conditional	Surrogate	Yes	No	No
LinearSHAP [28]	Linear	Marginal	Empirical	No	Yes	Yes
Correlated LinearSHAP [28]	Linear	Conditional	Parametric	No	No	No
Interventional TreeSHAP [16]	Tree	Marginal	Empirical	No	Yes	Yes
Path dependent TreeSHAP [16]	Tree	Conditional	Empirical*	No	No	Yes
DeepLIFT [17]	Deep	Baseline	Exact	No	No	Yes
DeepSHAP [15]	Deep	Marginal	Empirical	No	No	Yes
DASP [33]	Deep Baseline		Exact	No	No	No
Shallow ShapNet [34]	Deep	Baseline	Exact	No	Yes	Yes
Deep ShapNet [34]	Deep	Baseline	Exact	No	No	Yes

- Why explain models?
- What are Shapley values?
- What are Shapley value explanations?
- Challenge 1: Feature removal approaches
- Challenge 2: Tractable estimation strategies

Feature removal approaches

Define v(S)

- To use Shapley values, we first need a coalitional game
 - But ML models are not coalitional games!
 - Models take vector inputs (\mathbb{R}^d)
 - Games take set inputs (2^D)
- Define a coalitional game based on the model
 - If a feature is in *S*, it is present
 - If a feature is not in S, it is absent

Feature removal approaches

Baseline Shapley values

Too dependent on a single baseline

$$v(S) = f\left(x_S^e, x_{\bar{S}}^b\right)$$

...but actually estimated this

Marginal Shapley values

$$\nu(S) = \mathbb{E}_{p(x_{\overline{S}})}[f(x_{S}^{e}, x_{\overline{S}})]$$

Conditional Shapley values

The original SHAP paper proposed this...

$$v(S) = \mathbb{E}_{p(x_{\overline{S}}|x_S)}[f(x_S^e, x_{\overline{S}})]$$

Simulated example

Linear model coefficients		Covariance		N Sha	/largin pley v	al value	Conditional Shapley value
					•		
	eta		Σ		ϕ^m	ϕ^c	
Independent full model	1	1	0	0	1	1	
	2	0	1	0	2	2	
	3	0	0	1	3	3	
Dependent full model	1	1	0	0	1	1	
	2	0	1	0.99	2	2.495	
	3	0	0.99	1	3	2.505	
Independent partial model	1	1	0	0	1	1	
	2	0	1	0	2	2	
	0	0	0	1	0	0	
Dependent partial model	1	1	0	0	1	1	
	2	0	1	0.99	2	1.01	
	0	0	0.99	1	0	0.99	

Tradeoffs

- Tradeoffs (marginal vs. conditional):
 - Intuitive: off-manifold vs. on-manifold
 - True to: model vs. data
 - Computation: easy vs. hard How to estimate?
- Some cite the multiple Shapley value explanations as a weakness
 - Fundamental tradeoff in the presence of correlated features

Feature removal algorithms (empirical)

 $S = \{1,2\} \qquad \qquad \nu(S) = \mathbb{E}[f(x_S)]$

Feature removal algorithms (conditional)

Takeaways

- Marginal Shapley values are estimated empirically
 - Can have unbiased estimates
- Conditional Shapley values can be estimated in numerous ways
 - Generally, cannot have unbiased estimates
 - The most promising approaches require training a deep model, which can be a hurdle in an explanation pipeline

- Why explain models?
- What are Shapley values?
- What are Shapley value explanations?
- Challenge 1: Feature removal approaches
- Challenge 2: Tractable estimation strategies

Tractable estimation strategies

• Computing Shapley values is NP-hard in general $\phi_i(v) = \sum_{S \subseteq D \setminus \{i\}} W(|S|, |D|) (v(S \cup \{i\}) - v(S))$

Tractable estimation strategies

• Computing Shapley values is NP-hard in general $\phi_i(v) = \sum_{S \subseteq D \setminus \{i\}} W(|S|, |D|) (v(S \cup \{i\}) - v(S))$

Shapley value explanations Linear models

- Linear model $f(x) = \beta x$
- Baseline/marginal Shapley values

$$\phi_i^m(x^e) = \beta_i(x_i^e - \mu_i)$$

- Conditional Shapley values \checkmark Additional assumption of normality $\phi_i^c(x^e) = \beta A_i \mu + \beta B_i x^e$
 - A_i and B_i are summations over an exponential number of coalitions, which we can estimate

Joseph D. Janizek

Shapley value explanations Tree models

- Interventional TreeSHAP
 - Exactly computes baseline and marginal Shapley values
- Path Dependent TreeSHAP
 - Approximates conditional Shapley values

Empirical (similarity) Similarity defined by tree leafs

S. Lundberg, G. Erion, **H. Chen**, A. DeGrave, J. Prutkin, B. Nair, R. Katz, J. Himmelfarb, N. Bansal, S. Lee. Nature Machine Intelligence (2020)

Lundberg

Gabriel Erion

Alex DeGrave

Shapley value explanations Deep models

- Approximates baseline Shapley values
 - DeepLIFT, DeepSHAP (baseline, marginal)
 - DASP (Deep Approximate Shapley Propagation)
 - ShapNets (Shapley Explanation Networks)

Requires using their architecture for training models which is restrictive Requires first and second-order central moment matching

Tractable estimation strategies

• Computing Shapley values is NP-hard in general $\phi_i(v) = \sum_{S \subseteq D \setminus \{i\}} W(|S|, |D|) (v(S \cup \{i\}) - v(S))$

Characterizations of the Shapley value

Unbiased estimator: draw subsets from P(S)and average marginal contributions

Model-agnostic estimators

Two main approaches

Empirical comparisons

- How do the unbiased stochastic estimators compare in terms of convergence?
- Three datasets:
 - Diabetes (10 features)
 - NHANES I (79 features)
 - Blog (280 features)
- MSE to true baseline Shapley values for a XGB with a single explicand and baseline
 Interventiona
 ITreeSHAP

Comparing best variants

Takeaways

- Model-specific approaches are all unique to the model type and the feature removal strategy
 - The best algorithms are for marginal Shapley values in linear and tree models
 - The others are tractable and can be useful, but more for scientific discovery/model debugging
- Model-agnostic approaches are flexible and independent of the model and removal strategy
 - They will have variance, because we typically have a fixed computational budget
 - We can estimate the variance and it is important to be aware of this

	Factors of complexity			Properties		
Method	Estimation strategy	Removal approach	Removal variant	Model- agnostic	Bias-free	Variance- free
ApproSemivalue [30]	SV	None	Exact	Yes	Yes	No
L-Shapley [26]	\mathbf{SV}	Marginal	Empirical	Yes	No	No
C-Shapley [26]	SV	Marginal	Empirical	Yes	No	No
ApproShapley [30]	RO	None	Exact	Yes	Yes	No
IME [27]	RO	Marginal	Empirical	Yes	Yes	No
CES [22]	RO	Conditional	Empirical	Yes	No	No
Shapley cohort refinement [53]	RO	Conditional	Empirical*	Yes	No	No
Generative model [50]	RO	Conditional	Generative	Yes	No	No
Surrogate model [50]	RO	Conditional	Surrogate	Yes	No	No
Multilinear extension sampling [31]	ME	Marginal	Empirical	Yes	Yes^{\diamond}	No
SGD-Shapley [54]	WLS	Baseline	Exact	Yes	No♡	No
KernelSHAP [15, 52]	WLS	Marginal	Empirical	Yes	Yes♠	No
Parametric KernelSHAP [49]	WLS	Conditional	Parametric	Yes	No	No
Nonparameteric KernelSHAP [49]	WLS	Conditional	Empirical*	Yes	No	No
FastSHAP [32]	WLS	$\operatorname{Conditional}$	Surrogate	Yes	No	No
LinearSHAP [28]	Linear	Marginal	Empirical	No	Yes	Yes
Correlated LinearSHAP [28]	Linear	Conditional	Parametric	No	No	No
Interventional TreeSHAP [16]	Tree	Marginal	Empirical	No	Yes	Yes
Path dependent TreeSHAP [16]	Tree	Conditional	Empirical*	No	No	Yes
DeepLIFT [17]	Deep	Baseline	Exact	No	No	Yes
DeepSHAP [15]	Deep	Marginal	Empirical	No	No	Yes
DASP [33]	Deep	Baseline	Exact	No	No	No
Shallow ShapNet [34]	Deep	Baseline	Exact	No	Yes	Yes
Deep ShapNet [34]	Deep	Baseline	Exact	No	No	Yes

Practical recommendations

- For tabular data, tree models dominate
 - TreeSHAP is a mature solution
 - Often used in finance
- For structured data, off-manifold issues can be worse
 - Conditional expectation with a surrogate model
 - FastSHAP or model-agnostic estimator

Additional recommendations

- Large number of features
 - Increases computational cost
 - Feature selection may be beneficial
- Large number of samples
 - More important for model fitting
 - Conditional expectations requires many samples
- Feature correlation
 - Makes it harder to understand features
 - Larger differences between marginal and conditional
 - Causal, group, or concept explanations

Conclusion

- Aimed to make Shapley value explanation literature more accessible
 - Introduce feature attributions and Shapley values
 - Identify factors of complexity through which we can summarize and understand the literature
 - Helps contextualize existing model-specific algorithms (many of which we have developed)
 - Suggests new algorithms based on connections between existing approaches
 - Identifies future research directions and fundamental limitations