

Discriminator-Guided Chain-of-Thought Reasoning

Muhammad Khalifa

Deep Learning Classics and Trends

March 1st, 2024

Outline

- Introducing chain-of-thought reasoning with LLMs.
- Why LLMs make reasoning errors?
- Post-hoc methods to improve reasoning.
- Introducing Guided Decoding for reasoning (GRACE).
- Results and some analysis.
- Connection to recent search-based techniques.
- Limitations and next steps.

Feel free to interrupt with questions!

Why Reasoning Matters

- A definition I like is "the ability to construct models from perception, description, and knowledge, to formulate novel but parsimonious conclusions from these models." [1]
- Complex reasoning is a hallmark of human intelligence.
- We reason about almost everything from grocery shopping to planning a vacation.
- We can't expect to reach AGI without solving reasoning.

Our Scope

- This talk focuses on a slightly narrow scope of reasoning tasks:
 - The input and output are in natural language.
 - There is a single correct final answer for each given input.
- Many reasoning problems fall under this scope:
 - Mathematical reasoning (e.g., math word problem solving)
 - Arithmetic reasoning (e.g., N-digit addition, division, etc.)
 - Symbolic reasoning (e.g., sorting, theorem proving, etc.)
 - Puzzle solving and game playing (e.g., game of 24).

Few-shot reasoning

- LLMs were shown to struggle with few-shot reasoning.
- They could not solve tasks such as n-digit addition or math word problems solving in a *single* pass.

Chain-of-thought Reasoning

- The trick was simple: Allow the LM to reason step-by-step!
- Prompt [1,2] or finetune LLMs [3] with chain-of-thought (CoT) solutions.

[1] Nye, Maxwell, et al. "Show your work: Scratchpads for intermediate computation with language models." arXiv preprint arXiv:2112.00114 (2021).
[2] Wei, Jason, et al. "Chain-of-thought prompting elicits reasoning in large language models." NeurIPS 2022.
[3] Ho, Namgyu, Laura Schmid, and Se-Young Yun. "Large language models are reasoning teachers." ACL 2023.

Why does CoT help?

- It is not immediately clear why CoT reasoning helps.
- Possibly:
 - It allows to spend extra computation per problem.
 - Recent work showed that training with pause tokens helps [1].
 - Decomposes the input problem into easier sub problems.
 - Each step can be thought of as solving a subproblem.
 - Serves as a working memory for the LLM.
 - LM does not need to store intermediate variables internally.
- Likely a combination of all these, but more analysis is needed.

Defining correctness

Input

• The final answer could be correct while the reasoning is wrong!

Q: Given a 7-day week, how much does Alex charge for 2 weeks of tutoring if she charges \$12 per day?

FLAN-T5 Output

A: There are 7 days in a week and Alex charges \$12 per day so she charges 12*7 = \$84 for one week of tutoring. There are 2 weeks in a month and she charges \$84 per week so she charges 2*84 = \$168 for two weeks of tutoring. The answer is 168.

- CoT exposes the model reasoning allowing to verify correctness.
- We say that a model has reasoned correctly if:
 - Each of the intermediate steps does not include errors (e.g., logical, factual or computational.)
 - The final answer is correct.
- Not a formal definition but should do for our purposes.

CoT Errors

- LLMs still produce incorrect steps along the chain.
- Why do reasoning errors happen?
- An artifact of both LLM *training* and *inference*.
- Inference: common decoding strategies for CoT are greedy/beam search.
 - They optimize for sequence likelihood according to the LM.
- But LLMs are poorly calibrated [1,2].
 - Training: internet data is typically of low quality.
- Thus, the most probable reasoning step is not necessarily correct.

High Probability != Correct

- LLMs can assign a *high* probability to *incorrect* steps and vice versa.
- Decoding CoT solutions with standard decoding strategies will produce incorrect chains.

CoT prompting with LLaMA-13B

I have 10 liters of orange drink that are two-thirds water and I wish to add it to 15 liters of pineapple drink that is three-fifths water. As I pour it, I spill one liter of the orange drink. How much water is in the remaining 24 liters?

Incorrect steps are assigned higher avg. token prob than the correct one!

Post-hoc methods

- Techniques to workaround this issue rely on sampling *multiple* full chains then ranking them based on correctness.
- Two main techniques: self-consistency [1] and verifiers [2].

• Ranking criterion:

- Final answer frequency: chains with more frequent answers are more likely to be correct.
- Chain "correctness": Train a model to differentiate correct/incorrect chains labeled based on final answer [2].

Issues with post-hoc methods

- There are at least two issues with post-hoc methods:
 - Miscalibration: They rely on sampling from underlying miscalibrated LM distribution.

- No control over the decoding: Applied on top of full chains after decoding is finished.
- → They still make mistakes and are highly sample-inefficient:
 - Many samples are needed to run into correct chains (if at all)

Guided decoding can help

- We propose guided stepwise decoding to address issues with posthoc methods:
 - Guided: Recalibrate step scores based on correctness.
 - Stepwise: finer-grained control at the step rather than the chain level.

Formalization

Given a problem q and a correct solution prefix $s_1, s_2, ..., s_{t-1}$, let's assume access to a discriminator model D that outputs a real-valued correctness score $D(q, s_{1:t-1}, s_t)$.

Let c be a binary variable indicating correctness of the generated step.

We want to sample next step $s_t \sim p(.|s_{1:t-1}, c, q)$

We can write
$$p(s_t|s_{1:t-1}, c, q) = \frac{p(s_t|s_{1:t-1}, q)p(c|s_t, s_{1:t-1}, q)}{p(c|s_{1:t-1}, q)}$$
$$\propto p(s_t|s_{1:t-1}, q) \cdot p(c|s_{1:t}, q)$$
$$= p_{\text{LM}}(s_t|q, s_{1:t-1}) \cdot p(c|s_{1:t}, q) \text{ Replace with probability according to } \underset{\text{LM}}{\text{LM}}$$
$$\propto p_{\text{LM}}(s_t|q, s_{1:t-1}) \cdot \exp(D(q, s_{1:t-1}, s_t)) \text{ Based on our definition of } D(q, s_{1:t-1}, s_t) \text{ and since we assume the prefix to be correct}$$

GRACE Decoding

- At each time step:
 - Sample a set of J candidate next steps from the LM $\{s_t^{(1)}, s_t^{(2)}, \dots, s_t^{(J)}\}$.
 - Score each step $s^{(i)}$ using:

$$(1 - \beta) \log p_{\mathrm{LM}} \left(s^{(i)} \mid q, s_{1:t-1} \right) + \beta D \left(q, s_{1:t-1}, s^{(i)} \right)$$

• Select top scored step.

Discriminator Learning

- D(q, r, s_t) should be high for correct steps and low for incorrect ones (r is the prefix for brevity).
- How do we learn $D(q, r, s_t)$?
- Goal: $D(q, r, s^+) > D(q, r, s^-)$ for all correct and incorrect steps s^+ and s^-

Discriminator Learning (contd.)

- If we have pairwise examples of the form (q, r, s^+, s^-) , we can train D with a contrastive objective.
- Max margin objective:
 - Minimize $\sum_{(q,r,s^+,s^-)\in E} \max\{0, D(q,r,s^-) D(q,r,s^+) + \zeta\}$
- How do we get these pairwise examples?
 - Human annotation:
 - Has been used to train process-reward models PRMs [1, 2].
 - Expensive!
 - Can we leverage gold chains?
 - Automatic Alignment incorrect chains with gold chains to extract pairwise examples.

[1] Lightman, Hunter, et al. "Let's Verify Step by Step." arXiv preprint arXiv:2305.20050 (2023).
[2] Uesato, Jonathan, et al. "Solving math word problems with process-and outcome-based feedback." arXiv preprint arXiv:2211.14275 (2022).

Chain Alignment

- Given an incorrect chain and a gold chain, we can find a *minimum-cost* alignment between two.
- **Cost:** Total cosine distance between aligned steps measured using ROSCOE[1].
- We use the Dynamic Programming-based Needleman-Wunsch algorithm [2].

[1] ROSCOE: A Suite of Metrics for Scoring Step-by-Step Reasoning. ICLR 2023.

[2] Likic, Vladimir. "The Needleman-Wunsch algorithm for sequence alignment." *Lecture given at the 7th Melbourne Bioinformatics Course, Bi021 Molecular Science and Biotechnology Institute, University of Melbourne* (2008): 1-46.

Summing it up

1. Sampling

Simulate mistakes the LM is likely to make during inference by sampling solutions from the model.

2. Step Alignment

Align steps of incorrect solutions with the reference steps to create contrastive examples.

3. Learning

Train the discriminator with max-margin loss.

Similar reward model training in RLHF!

Experimental Setup

- Backbone models: FLAN-T5, LLaMA-7B, LLaMA-13B.
- **Baselines:** greedy, LM-only scoring, vanilla self-consistency (SC) and verifiers.
- For each task, we roughly sample 100K solutions for discriminator training.
- We use a T5-Large encoder as the discriminator (20X, 38X smaller than LLaMA-7B and LLaMA-13B.)
- Tasks:
 - math: GSM8K, MathQA-Gain, SVAMP, and MultiArith.
 - symbolic: Coin Flip and Tracking Shuffled Objects from Big-Bench Hard.

Effect on Final Answer Accuracy

	FLAN-T5 _{Large} (Fine-tuned)		LLAMA7B (few-shot prompted)			
	GSM8K	SVAMP	MathQA-Gain	GSM8K	SVAMP	MultiArith
Greedy decoding	26.9	54.5	76.5	12.9	32.8	54.0
Random sampling						
Vanilla SC	33.3	61.8	78.9	20.7	52.4	78.9
Solution verifier	20.5	45.9	83.7	9.60	26.1	46.4
LM-only score ($\beta = 0$)	27.5	53.1	52.9	12.5	39.6	57.9
Guided sampling						
GRACE	34.3 (+7.4)	66.2 (+11.7)	84.1 (+6.0)	16.2 (+3.30)	49.7 (+17.3)	84.9 (+30.9)
GRACE w/ SC	36.3 (+3.0)	68.6 (+6.80)	84.4 (+0.7)	30.9 (+10.2)	55.6 (+3.20)	94.6 (+15.7)

Final answer accuracy (math reasoning)

GRACE outperforms almost all baselines.

GRACE + Self-consistency is best across the board \rightarrow Shows the value of guided compared to random sampling.

Effect on Intermediate Reasoning

- Final answer accuracy does tell the full story.
- We evaluate whether GRACE improves correctness of generated chains.
- We measure prefix correctness via GPT-3.5-turbo.
- We measure trace error [1] (% of correct solutions with at least one major mistake) via humans and GPT-3.5-turbo.

	Prefix Correctness- LLM (†)	LLM- TE (↓)	Human- TE (↓)
Greedy decode	46.5	7.0	9.0
Vanilla SC	51.0	9.8	-
GRACE	53.5 (+7.0)	5.2 (-1.8)	5.0 (-4.0)
GRACE w/ SC	54.8 (+3.8)	6.6 (-3.2)	

GRACE improves prefix correctness and reduces trace error by 44% compared to greedy

[1] Uesato, Jonathan, et al. "Solving math word problems with process-and outcome-based feedback." arXiv preprint arXiv:2211.14275 (2022).

Sample Efficiency

- As discussed earlier, post-hoc methods require plenty of samples to reach correct answers because of reliance on random sampling.
- We compare guided sampling + SC vs. random sampling + SC.

GRACE reaches substantially better accuracy with significantly fewer samples.

Analysis: step scoring coefficient

Effect of varying
$$\beta$$
 In $(1 - \beta) \log p_{\text{LM}} \left(s^{(i)} \mid q, s_{1:t-1} \right) + \beta D \left(q, s_{1:t-1}, s^{(i)} \right)$

Takeaways

- LMs can easily assign high likelihood to incorrect reasoning.
- We can mitigate this by recalibrating reasoning step likelihoods based on correctness.
- Guided reasoning can improve both sample efficiency and correctness of reasoning.
- A small but specialized model can provide guidance for a much larger model.

Connection to recent work

- There's plenty of recent approaches on applying search methods on top of LLMs.
- A search method is used to traverse the solution space, guided by some scoring function or reward [1,2,3].
- Three main dimensions to inference-time techniques for reasoning:
 - Step scoring: learned vs. prompting-based.
 - # of parallel chains: 1 vs many (tree [1,2,3] or even graph [4])
 - Search algorithm: Greedy vs. more advanced like A* or MCTS.

^[1] Hao, Shibo, et al. "Reasoning with language model is planning with world model." EMNLP 2023.

^[2] Yao, Shunyu, et al. "Tree of thoughts: Deliberate problem solving with large language models." NeurIPS 2023.

^[3] Zhou, Andy, et al. "Language agent tree search unifies reasoning acting and planning in language models." arXiv preprint arXiv:2310.04406 (2023).

^[4] Besta, Maciej, et al. "Graph of thoughts: Solving elaborate problems with large language models." arXiv preprint arXiv:2308.09687 (2023).

Limitations

- While inference-time techniques relief the need to train the LLM, they do not come without limitations.
- Latency: The search process makes inference extremely slow.
- API cost: LLM-based scoring requires tens of API calls per input.
- GRACE requires access to correct chains to train the discriminator.
- Inference-time methods are upper-bounded by the performance of the underlying LLM.
- The alignment algorithm is sensitive to the step order even if two steps can be done in any order.

What's next?

- Use the learned scoring function to train the LM akin to RLAIF [1].
- Improving search efficiency:
 - Requires many API Calls (for self-evaluation and exploration)
 - Slow when the search space is large
- Training a low-shot discriminator that needs few/no gold chains:
 - Training a dedicated scoring function is still relevant.
 - LLMs were shown to fail at identifying their own errors [3].
- Introducing step order invariance to the alignment.
- Please reach out if you want to discuss more!

^[3] Huang, Jie, et al. "Large language models cannot self-correct reasoning yet." arXiv preprint arXiv:2310.01798 (2023).

Thank you!

Backup slides

NW Alignment ablation

- How useful is our Needleman-Wunsch (NW) alignment for discriminator training?
- We compare NW alignment to naive alignment.
- The naive version simply aligns corresponding steps in correct and incorrect chains.

Token efficiency

- If a step is on average 20 tokens and each chain has 5 steps.
- If number of candidate steps for GRACE is J = 10.
- GRACE would sample 20 * 10 * 5 = 1000 tokens per chain.
- Self-consistency with N=40 would sample: 20 * 5 * 40 = 4000 tokens.
- GRACE requires 0.25x as many tokens as SC.

Connection to Controlled Generation

- GRACE is inspired by the controllable generation approach FUDGE [1].
- FUDGE uses a *future* discriminator to adjust token log probs.
- Two main distinctions:
 - FUDGE's discriminator looks at the future, ours looks at both present and past.
 - FUDGE operates at the token level, GRACE at the step-level (correctness of a single token is meaningless).

FUDGE (Yang et al., 2021)