
Discriminator-Guided
Chain-of-Thought Reasoning

Muhammad Khalifa

1

Deep Learning Classics and Trends

March 1st, 2024

Outline

• Introducing chain-of-thought reasoning with LLMs.
• Why LLMs make reasoning errors?
• Post-hoc methods to improve reasoning.
• Introducing Guided Decoding for reasoning (GRACE).
• Results and some analysis.
• Connection to recent search-based techniques.
• Limitations and next steps.

Feel free to interrupt with questions!

2

Why Reasoning Matters

• A definition I like is "the ability to construct models from perception,
description, and knowledge, to formulate novel but parsimonious
conclusions from these models.” [1]
• Complex reasoning is a hallmark of human intelligence.
• We reason about almost everything from grocery shopping to

planning a vacation.
• We can’t expect to reach AGI without solving reasoning.

3

[1] Johnson-Laird, Philip. How we reason. Oxford University Press, 2008.

Our Scope

• This talk focuses on a slightly narrow scope of reasoning tasks:
• The input and output are in natural language.
• There is a single correct final answer for each given input.

•Many reasoning problems fall under this scope:
• Mathematical reasoning (e.g., math word problem solving)
• Arithmetic reasoning (e.g., N-digit addition, division, etc.)
• Symbolic reasoning (e.g., sorting, theorem proving, etc.)
• Puzzle solving and game playing (e.g., game of 24).

Few-shot reasoning

• LLMs were shown to struggle with few-shot reasoning.
• They could not solve tasks such as n-digit addition or math word problems

solving in a single pass.

5

Few-shot prompt
Q: 142 + 265 =
A: 407
Q: 342 + 423 =

A: 657

Chain-of-thought Reasoning
• The trick was simple: Allow the LM to reason step-by-step!
• Prompt [1,2] or finetune LLMs [3] with chain-of-thought (CoT) solutions.

[1] Nye, Maxwell, et al. "Show your work: Scratchpads for intermediate computation with language models." arXiv preprint arXiv:2112.00114 (2021).
[2] Wei, Jason, et al. "Chain-of-thought prompting elicits reasoning in large language models." NeurIPS 2022.
[3] Ho, Namgyu, Laura Schmid, and Se-Young Yun. "Large language models are reasoning teachers." ACL 2023.

Wei et al., 2022

GSM8K StrategyQA

Why does CoT help?

• It is not immediately clear why CoT reasoning helps.
• Possibly:
• It allows to spend extra computation per problem.

• Recent work showed that training with pause tokens helps [1].
• Decomposes the input problem into easier sub problems.

• Each step can be thought of as solving a subproblem.
• Serves as a working memory for the LLM.

• LM does not need to store intermediate variables internally.

• Likely a combination of all these, but more analysis is needed.

[1] Goyal, Sachin, et al. "Think before you speak: Training Language Models With Pause Tokens." arXiv preprint arXiv:2310.02226 (2023).

Sachin, et al., 2023

Defining correctness

• The final answer could be correct while the reasoning is wrong!

• CoT exposes the model reasoning allowing to verify correctness.
• We say that a model has reasoned correctly if:
• Each of the intermediate steps does not include errors (e.g., logical, factual or

computational.)
• The final answer is correct.

• Not a formal definition but should do for our purposes.

Q: Given a 7-day week, how much does Alex charge
for 2 weeks of tutoring if she charges $12 per day?

Input
A: There are 7 days in a week and Alex charges $12 per day so
she charges 12*7 = $ 84 for one week of tutoring.
There are 2 weeks in a month and she charges $84 per week
so she charges 2*84 = $ 168 for two weeks of tutoring.
The answer is 168.

FLAN-T5 Output

CoT Errors

• LLMs still produce incorrect steps along the chain.
• Why do reasoning errors happen?
• An artifact of both LLM training and inference.
• Inference: common decoding strategies for CoT are greedy/beam

search.
• They optimize for sequence likelihood according to the LM.

• But LLMs are poorly calibrated [1,2].
• Training: internet data is typically of low quality.

• Thus, the most probable reasoning step is not necessarily correct.

[1] Holtzman, Ari, et al. "Surface form competition: Why the highest probability answer isn't always right." EMNLP 2021.
[2] Zhao, Zihao, et al. "Calibrate before use: Improving few-shot performance of language models." International Conference on Machine Learning. PMLR, 2021.

CoT prompting with LLaMA-13B

High Probability != Correct

• LLMs can assign a high
probability to incorrect steps and
vice versa.
• Decoding CoT solutions with

standard decoding strategies will
produce incorrect chains.

10

Incorrect steps are assigned higher avg. token
prob than the correct one!

Post-hoc methods
• Techniques to workaround this issue rely on sampling multiple

full chains then ranking them based on correctness.
• Two main techniques: self-consistency [1] and verifiers [2].
• Ranking criterion:
• Final answer frequency: chains with more frequent answers

are more likely to be correct.
• Chain “correctness”: Train a model to differentiate

correct/incorrect chains labeled based on final answer [2].

11
[1] Wang, Xuezhi, et al. "Self-consistency improves chain of thought reasoning in language models." ICLR 2023.
[2] Cobbe, Karl, et al. "Training verifiers to solve math word problems." arXiv preprint arXiv:2110.14168 (2021).

Issues with post-hoc methods

12

Wang et al., 2023

• There are at least two issues
with post-hoc methods:
• Miscalibration: They rely on

sampling from underlying
miscalibrated LM distribution.
• No control over the decoding: Applied on top of full chains after

decoding is finished.

à They still make mistakes and are highly sample-inefficient:
• Many samples are needed to run into correct chains (if at all)

Guided decoding can help
•We propose guided

stepwise decoding to
address issues with post-
hoc methods:
•Guided: Recalibrate step

scores based on
correctness.
• Stepwise: finer-grained

control at the step rather
than the chain level.

Guided stepwise
decoding

Random sampling
Reasoning Step

Guided decoding

Apply verifier or
self-consistency

Correctness
Guider

Post-hoc
approaches

Formalization
Given a problem 𝑞 and a correct solution prefix 𝑠!, 𝑠", … , 𝑠#$!, let’s assume access to a
discriminator model 𝐷 that outputs a real-valued correctness score 𝐷 𝑞, 𝑠!:#$!, 𝑠# .
Let 𝑐 be a binary variable indicating correctness of the generated step.
We want to sample next step 𝑠# ∼ 𝑝(. |𝑠!:#$!, 𝑐, 𝑞)

We can write

Replace with probability according to
LM

Based on our definition of
𝐷(𝑞, 𝑠!:#$!, 𝑠#) and since
we assume the prefix to be
correct

GRACE Decoding

• At each time step:
• Sample a set of 𝐽 candidate next steps from the LM {𝑠'

((), 𝑠'
()), … , 𝑠'

* }.
• Score each step 𝑠(") using:

• Select top scored step.

15

<latexit sha1_base64="eWo7MDc86liTyR5DaPJcwPhsYP4=">AAACWHicbVFBT9swFHYCDCgwChy5WKsmtRpUCdoAcULAgcMmMWkFpKaLHPeltbDjYL8gVVH+JBIH+Cu7zG1zYLAnWfr0fd979vuc5FJYDIJnz19YXPqwvLLaWFvf+LjZ3Nq+trowHHpcS21uE2ZBigx6KFDCbW6AqUTCTXJ3PtVvHsBYobNfOMlhoNgoE6ngDB0VN3U73I8SQNahkdQjmsdlpBiOjSq//6iqSEKKbfu7bItORSMlhvR+j9q4DE9wP3SMEaMxdr7MRtCLuf21w8F5c+2Mm62gG8yKvgdhDVqkrqu4+RgNNS8UZMgls7YfBjkOSmZQcAlVIyos5IzfsRH0HcyYAjsoZ8FU9LNjhjTVxp0M6Yx93VEyZe1EJc45Xdq+1abk/7R+genxoBRZXiBkfH5RWkiKmk5TpkNhgKOcOMC4Ee6tlI+ZYRzdXzRcCOHbld+D64NueNj99vNr6/SsjmOF7JJPpE1CckROySW5Ij3CyRP54y16S96LT/xlf3Vu9b26Z4f8U/72X2hwsM4=</latexit>

(1� �) log pLM
⇣
s(i) | q, s1:t�1

⌘
+ �D

⇣
q, s1:t�1, s

(i)
⌘

Discriminator Learning
• D q, r, s& should be high for correct steps and low for incorrect

ones (r is the prefix for brevity).

• How do we learn D q, r, s& ?
• Goal: 𝐷 𝑞, 𝑟, 𝑠' > 𝐷(𝑞, 𝑟, 𝑠$) for all correct and incorrect steps
𝑠' and 𝑠$

16

Discriminator .8Discriminator -.3

Discriminator Learning (contd.)
• If we have pairwise examples of the form 𝑞, 𝑟, 𝑠!, 𝑠" , we can

train 𝐷 with a contrastive objective.
• Max margin objective:

• Minimize ∑ +,,,-!,-" ∈/max{0, 𝐷 𝑞, 𝑟, 𝑠0 − 𝐷 𝑞, 𝑟, 𝑠1 + 𝜁}

• How do we get these pairwise examples?
• Human annotation:

• Has been used to train process-reward models PRMs [1, 2].
• Expensive!

• Can we leverage gold chains?
• Automatic Alignment incorrect chains with gold chains to extract pairwise

examples.

17
[1] Lightman, Hunter, et al. "Let's Verify Step by Step." arXiv preprint arXiv:2305.20050 (2023).
[2] Uesato, Jonathan, et al. "Solving math word problems with process-and outcome-based feedback." arXiv preprint arXiv:2211.14275 (2022).

Chain Alignment
• Given an incorrect chain and a gold chain, we can find a minimum-cost alignment

between two.

• Cost: Total cosine distance between aligned steps measured using ROSCOE[1].

• We use the Dynamic Programming-based Needleman-Wunsch algorithm [2].

18

[1] ROSCOE: A Suite of Metrics for Scoring Step-by-Step Reasoning. ICLR 2023.
[2] Likic, Vladimir. "The Needleman-Wunsch algorithm for sequence alignment." Lecture given at the 7th Melbourne Bioinformatics Course, Bi021
Molecular Science and Biotechnology Institute, University of Melbourne (2008): 1-46.

Gold chain Incorrect chain

Training example (𝑞, 𝑟, 𝑠%, 𝑠$)𝑠%

𝑟

𝑠$

𝑞

Summing it up

19

Similar reward model training in RLHF!

Experimental Setup

• Backbone models: FLAN-T5, LLaMA-7B, LLaMA-13B.
• Baselines: greedy, LM-only scoring, vanilla self-consistency (SC) and

verifiers.
• For each task, we roughly sample 100K solutions for discriminator

training.
• We use a T5-Large encoder as the discriminator (20X, 38X smaller than

LLaMA-7B and LLaMA-13B.)
• Tasks:
• math: GSM8K, MathQA-Gain, SVAMP, and MultiArith.
• symbolic: Coin Flip and Tracking Shuffled Objects from Big-Bench

Hard.
20

Effect on Final Answer Accuracy

21

Final answer accuracy (math reasoning)

GRACE outperforms almost all baselines.
GRACE + Self-consistency is best across the board à Shows the
value of guided compared to random sampling.

Effect on Intermediate Reasoning

• Final answer accuracy does tell the full story.
• We evaluate whether GRACE improves correctness of generated chains.
• We measure prefix correctness via GPT-3.5-turbo.
• We measure trace error [1] (% of correct solutions with at least one major

mistake) via humans and GPT-3.5-turbo.

22

GRACE improves prefix
correctness and reduces
trace error by 44%
compared to greedy

[1] Uesato, Jonathan, et al. "Solving math word problems with process-and outcome-based feedback." arXiv preprint arXiv:2211.14275 (2022).

Sample Efficiency

23

• As discussed earlier, post-hoc methods require plenty of samples to
reach correct answers because of reliance on random sampling.
• We compare guided sampling + SC vs. random sampling + SC.

GRACE reaches substantially better accuracy with significantly fewer samples.

Analysis: step scoring coefficient

24

Effect of varying 𝛽 In
<latexit sha1_base64="eWo7MDc86liTyR5DaPJcwPhsYP4=">AAACWHicbVFBT9swFHYCDCgwChy5WKsmtRpUCdoAcULAgcMmMWkFpKaLHPeltbDjYL8gVVH+JBIH+Cu7zG1zYLAnWfr0fd979vuc5FJYDIJnz19YXPqwvLLaWFvf+LjZ3Nq+trowHHpcS21uE2ZBigx6KFDCbW6AqUTCTXJ3PtVvHsBYobNfOMlhoNgoE6ngDB0VN3U73I8SQNahkdQjmsdlpBiOjSq//6iqSEKKbfu7bItORSMlhvR+j9q4DE9wP3SMEaMxdr7MRtCLuf21w8F5c+2Mm62gG8yKvgdhDVqkrqu4+RgNNS8UZMgls7YfBjkOSmZQcAlVIyos5IzfsRH0HcyYAjsoZ8FU9LNjhjTVxp0M6Yx93VEyZe1EJc45Xdq+1abk/7R+genxoBRZXiBkfH5RWkiKmk5TpkNhgKOcOMC4Ee6tlI+ZYRzdXzRcCOHbld+D64NueNj99vNr6/SsjmOF7JJPpE1CckROySW5Ij3CyRP54y16S96LT/xlf3Vu9b26Z4f8U/72X2hwsM4=</latexit>

(1� �) log pLM
⇣
s(i) | q, s1:t�1

⌘
+ �D

⇣
q, s1:t�1, s

(i)
⌘

Performance drops when 𝛽=1
showing that we still want to
incorporate 𝑝!" representing the
reasoning abilities of the LM

Takeaways

25

• LMs can easily assign high likelihood to incorrect reasoning.
• We can mitigate this by recalibrating reasoning step likelihoods

based on correctness.
• Guided reasoning can improve both sample efficiency and

correctness of reasoning.
• A small but specialized model can provide guidance for a much larger

model.

Connection to recent work

26

• There’s plenty of recent approaches on applying search
methods on top of LLMs.
• A search method is used to traverse the solution space,

guided by some scoring function or reward [1,2,3].
• Three main dimensions to inference-time techniques for

reasoning:
• Step scoring: learned vs. prompting-based.
• # of parallel chains: 1 vs many (tree [1,2,3] or even graph [4])
• Search algorithm: Greedy vs. more advanced like A* or MCTS.

[1] Hao, Shibo, et al. "Reasoning with language model is planning with world model." EMNLP 2023.
[2] Yao, Shunyu, et al. "Tree of thoughts: Deliberate problem solving with large language models.” NeurIPS 2023.
[3] Zhou, Andy, et al. "Language agent tree search unifies reasoning acting and planning in language models." arXiv preprint arXiv:2310.04406 (2023).
[4] Besta, Maciej, et al. "Graph of thoughts: Solving elaborate problems with large language models." arXiv preprint arXiv:2308.09687 (2023).

Limitations

27

• While inference-time techniques relief the need to train the LLM,
they do not come without limitations.
• Latency: The search process makes inference extremely slow.
• API cost: LLM-based scoring requires tens of API calls per input.
• GRACE requires access to correct chains to train the discriminator.
• Inference-time methods are upper-bounded by the performance of

the underlying LLM.
• The alignment algorithm is sensitive to the step order even if two

steps can be done in any order.

What’s next?

28

• Use the learned scoring function to train the LM akin to RLAIF [1].
• Improving search efficiency:
• Requires many API Calls (for self-evaluation and exploration)
• Slow when the search space is large

• Training a low-shot discriminator that needs few/no gold chains:
• Training a dedicated scoring function is still relevant.
• LLMs were shown to fail at identifying their own errors [3].

• Introducing step order invariance to the alignment.
• Please reach out if you want to discuss more!

[1] Lee, Harrison, et al. "Rlaif: Scaling reinforcement learning from human feedback with ai feedback." arXiv preprint arXiv:2309.00267 (2023).
[2] Li, Jingjing, et al. "Unsupervised text generation by learning from search." NeurIPS 2020.
[3] Huang, Jie, et al. "Large language models cannot self-correct reasoning yet." arXiv preprint arXiv:2310.01798 (2023).

Thank you!

29

Backup slides

30

NW Alignment ablation

31

• How useful is our Needleman-Wunsch (NW) alignment for discriminator
training?
• We compare NW alignment to naive alignment.
• The naive version simply aligns corresponding steps in correct and incorrect

chains.

NW alignment
outperforms
the naïve
version

Token efficiency

32

• If a step is on average 20 tokens and each chain has 5 steps.
• If number of candidate steps for GRACE is J = 10.
• GRACE would sample 20 * 10 * 5 = 1000 tokens per chain.
• Self-consistency with N=40 would sample: 20 * 5 * 40 = 4000

tokens.
• GRACE requires 0.25x as many tokens as SC.

Connection to Controlled Generation

• GRACE is inspired by the controllable
generation approach FUDGE [1].
• FUDGE uses a future discriminator to

adjust token log probs.
• Two main distinctions:

• FUDGE’s discriminator looks at the future, ours
looks at both present and past.

• FUDGE operates at the token level, GRACE at
the step-level (correctness of a single token is
meaningless).

[1] Yang, Kevin, and Dan Klein. "FUDGE: Controlled text generation with future discriminators." NAACL 2021

FUDGE (Yang et al., 2021)

Future Discriminator

LM

