## To Stay or Not to Stay in the Pre-train Basin: Insights on Ensembling in Transfer Learning



Ildus Sadrtdinov\*



Dmitrii Pozdeev\*





\* equal contribution





Dmitry Vetrov

Ekaterina Lobacheva







## Transfer learning & ensembles

### **Transfer learning**



Fine-tune model on small target data

### **Deep ensembles**

Train several models from different initializations

Average their predictions

How to combine them effectively?



## Ensembles in transfer learning

Local DE



Local Deep Ensemble (Local DE) • X similar networks, lower quality cheap to train

pre-trained checkpoint optimization trajectory



3

# Ensembles in transfer learning

### **Global DE**



- Local Deep Ensemble (Local DE) cheap to train
- Global Deep Ensemble (**Global DE**) diverse networks, higher quality × expensive to train

pre-trained checkpoint

# Ensembles in transfer learning

### **Global DE**



Reduce the gap between Local and **Global DE** with one pre-trained model?

pre-trained checkpoint





## Experimental setup

Architecture / pre-training type:

- ResNet-50 / BYOL (Grill et al, 2020) on ImageNet
- ResNet-50 / supervised on ImageNet •
- Swin-T / supervised on ImageNet
- ViT-B/32 / CLIP igodol

Fine-tuning datasets:

- Natural: CIFAR-10/100, SUN-397 lacksquare
- Non-natural: Chest-X, Clipart
- ImageNet (for CLIP pre-training only)



## Effective ensembles in non-transfer setup



Possible approaches:

- Approximate the basin with some distribution and sample from it:
  - KFAC Laplace
  - SWA-Gaussian
  - SPRO (simplexes)
- Explore the basin using cyclical LR:
  - FGE
  - SSE
  - cSGLD



## Can existing methods help?



Cyclical methods, e.g. SnapShot Ensembles (SSE, Huang et al., 2017)

Cyclical learning rate (LR) schedule, ensemble checkpoint at LR minima

### **Our experiments:**

- **First network** same as in Local DE
- Following cycles different cycle hyperparametes (num epochs & max LR)

8

## Local and semi-local behavior of SSE



- Low hyperparameters  $\rightarrow$  same basin  $\rightarrow$ • **local** behavior
- High hyperparameters  $\rightarrow$  neighboring basins → **semi-local** behavior

### Is it better to use SSE in a local or **semi-local regime?**



## Finally, end of the problem setup... Questions?



### SSE results



ResNet-50, CIFAR-100, BYOL self-supervised pre-training. 3 main SSE-results: More local SSE — models are very close, slowly growing ensemble quality

- Optimal SSE more diverse models, quality comparable to Local DE
  - More semi-local SSE low quality of ensembles of larger sizes

11

### SSE analysis



ResNet-50, CIFAR-100, BYOL self-supervised pre-training.

- More local SSE & Optimal SSE • local behavior (no accuracy drop in the middle, same basin)
- More semi-local SSE semi-local behaviour (accuracy drop in the middle, different basins)





### SSE analysis



ResNet-50, CIFAR-100, BYOL self-supervised pre-training. After each cycle:

- Train accuracy ↑
- Test accuracy ↓



- overfits  $\bullet$
- goes too far from pre-trained checkpoint
- loses advantages of transfer learning



### Can we do better than SSE?



SSE

 Problem: sequential training → degradation of models quality



## StarSSE, our modification of SSE







SSE

- **Problem:** sequential training  $\rightarrow$ • degradation of models quality
- **Solution:** train models in ulletparallel!
- First network trained similarly to SSE
- Rest of models trained in parallel starting from the first network





### StarSSE and Local DE





Local DE

- Local DE: parallel training from lacksquarepre-trained checkpoint
- **StarSSE:** parallel training from lacksquarefine-tuned model
- StarSSE separates moving to low-loss region and pre-train **basin exploration**!



### StarSSE results: ensembles



ResNet-50, CIFAR-100, BYOL self-supervised pre-training.

- **Optimal StarSSE** outperforms both optimal SSE and Local DE
- Semi-local StarSSE quality degrades less than **semi-local** SSE







### KFAC Laplace (Ritter et al, 2018)

- Fit a Gaussian around a single trained model
- Kronecker factored approximation of Hessian matrix as covariance
- Sample new ensemble models from the Gaussian





### >5

### SWAG (Maddox et al, 2019)

- Fit a Gaussian over models from training trajectory (SWA models)
  - Requires additional epochs of training
- Sample new ensemble models 0.091 from the Gaussian 0.084





### SPRO (Benton et al, 2021)

- Fit a simplex (e.g., a triangle) in the vicinity of a trained model
- Requires additional epochs of training
- Sample new ensemble models from the simplex



Comparison metrics:

- test accuracy
- test prediction diversity:

$$diversity = 100 \cdot \mathbb{E}_{m_1 \neq m_2} \frac{\mathbb{E}_{images}}{ma}$$

- $m_i$  model from the ensemble
- $pred_i$  prediction of model  $m_i$  for a given image
- $err_i$  test error of model  $m_i$

### $[pred_1 \neq pred_2]$

 $\mathbf{x}(err_1, err_2)$ 





ResNet-50, CIFAR-100, BYOL self-supervised pre-training.



## Feeling tired? Take a meme:

# Usual researchers



### Listeners of this talk Loss landscape researchers





### Model soups



### By Wortsman et al, 2022

- Utilizing locality explicitly lacksquare
- Average weights instead of predictions
- Faster inference (1 forward pass instead of N)
- Good OOD performance



## StarSSE results: model soups



ResNet-50, CIFAR-100, BYOL self-supervised pre-training.

5 4

more semi-local exp

- Optimal StarSSE soup outperforms both optimal SSE soup and Local DE soup
- StarSSE find models:
  - more diverse than Local DE and forms strong ensembles Iocated in a more "convex" region than Local DE and forms good soups





## StarSSE results: OOD ensembles



ResNet-50, CIFAR-100C, BYOL self-supervised pre-training.

- CIFAR-100C: 19 synthetic corruptions, 5 severity values
- Optimal StarSSE and optimal SSE become inferior to Local DE
- Degradation of individual models quality is more pronounced on OOD data





## StarSSE results: OOD soups



ResNet-50, CIFAR-100C, BYOL self-supervised pre-training.

5 4

- more semi-local exp

- CIFAR-100C: 19 synthetic corruptions, 5 severity values
- **Optimal StarSSE soup** has the best OOD performance







### Large scale experiment: ensemble



StarSSE works in a more practical setup as well: ViT-B/32 architecture CLIP pre-training ImageNet fine-tuning



## Large scale experiment: model soup



StarSSE works in a more practical setup as well:

- -ViT-B/32 architecture
- CLIP pre-training
- ImageNet fine-tuning



### 2D loss landscape visualization

### SSE, CIFAR-100 train set



### SSE, CIFAR-100 test set





### 2D loss landscape visualization

### StarSSE, CIFAR-100 train set



### StarSSE, CIFAR-100 test set





### Conclusion

- SSE does not close the gap between Local and Global DE Iocal behavior — high accuracy ensembles  $\times$  semi-local behavior — degradation of models quality
- StarSSE parallel modification of SSE better suits specific of transfer learning outperforms both SSE and Local DE  $\checkmark$  strong model soups (especially on OOD!)
- Additional results: other datasets, model diversification analysis

https://arxiv.org/abs/2303.03374 Paper: Code: https://github.com/isadrtdinov/ens-for-transfer



