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Background and Motivation

Catastrophic Inheritance of Large Foundation Models
Noisy Model Learning



Background — Large Foundation Models

* Large foundation models require massive pre-training data
* Open CLIP — 2.0 billion image-text pairs
e Llama - 2.0T tokens

« Adaption of foundation models
* Pre-training on proxy tasks

« Tuning on specific downstream tasks (linear probing, parameter efficient tuning,
full fine-tuning, etc.)

 Success of foundation models attributed to the pre-training data

 Large-scale pre-training data are usually collected from web

* Inevitable noise (and other types of bias) in pre-training data that may lead to
unexpected generalization performance and behavior



Pre-training Bias -> Catastrophic Inheritance

Pre-training Data Biases Foundation Models Downstream Impacts
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* Pre-training biases used to train foundation models may be
iInherited to downstream tasks with malicious impacts

* Unexplored direction yet very important and interesting

Hao Chen et al. On catastrophic inheritance of large foundation models. 2024.



Examples of Catastrophic Inheritance

Table 1: Realistic examples of catastrophic inheritance from published papers or news.

This work

Example Domain Source

Stable Diffusion models was trained on Laion-5B, which contains hundreds Ethics and [Birhane et al., 2023, Forbes,
of harmful images of child sexual abuse material (CSAM). Then, the model privacy 2023, Thiel, 2023]

was reported to memorize during training and generate CSAM at production.

At least 50% of poisoning, adversarial, and backdoor vulnerabilities will be ~ Security [Wang et al., 2018, Zhang
inherited from pre-training data to fine-tuned models, which can be easily et al., 2022, Carlini et al.,
triggered at the deployment. Jailbreaks may also relate to pre-training biases. 2023a, Zou et al., 2023]

An MIT student asked Al to make her headshot more ‘professional.’ It gave Bias [Boston.com, 2023, Wang
her lighter skin and blue eyes. Country bias also found in language models. et al., 2023a

Fine-tuning LLLMs on only 10 adversarially designed or even benign samples Misalignment [Qi et al., 2023]

leads to degradation of safety alignment, which costs less than $0.2 using

APIL.

Noisy labels contained in pre-trained data always hurt downstream OOD  Generalization [Chen et al., 2024]
performance; more than 10% noisy data will hurt in-domain performance.

Large language models like GPT-3.5 exhibited an accuracy reduction of Model [Jin et al., 2024, Zheng et al.]
18.12% when answering non-English medical questions. Similar for coding behaviors

tasks.

Noise in the pre-training data strengthen the double descent phenomena, Training [Nakkiran et al., 2019]
where the critical point of LFMs overfitting/memorizing data appears earlier. ~dynamics

Hao Chen et al. On catastrophic inheritance of large foundation models. 2024.



This Work: Inevitable Pre-training Noise

 Evidence in CLIP
* OpenAl trains CLIP on WIT-400M (not public)
« OpenCLIP trains CLIP on Laion-2B, with more noisy image-text pairs
* Yet they achieve similar zero-shot performance

Data, Arch. ImageNet VTAB+

CLIP [55] WIT-400M |L/14 75.5 55.8
Ours LAION-2B |L/14 75.2 54.6
Ours LAION-2B H/14 78.0 56.4

Mehdi Cherti et al. Reproducible scaling laws for contrastive language-image learning. 2022.



Inevitable Pre-training Noise

 Evidence in LLM

» Repeated data/corruption [2]
* |_eads to memorization of these noise
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Noisy Model Learning

* Noisy Label Learning
« Data of downstream task contain noise
* Noise hurts downstream performance
* Improve the model performance when downstream contains noise
* Many techniques, widely studied

° Noisy Model Learning (of foundation models)
« Data of pre-training task contain noise
« Data of downstream tasks are clean (or noisy)

« Does the pre-training noise affect the downstream generalization? If so,
how?

« Unexplored before, perhaps intuitively believe the cleaner, the better



Motivation on Noisy Model Learning

Noisy Model Learning (of foundation models)

« How does the noise in pre-training data affect the performance of pre-
trained models on downstream tasks?

« How can we mitigate the detrimental effect of pre-training noise on
downstream, if any?

* Possible black-box and noisy pre-training data
« Massive size, expired urls...

 Possible (partially) black-box pre-trained models

 Private models
* Expensive computational requirement of full fine-tuning



Noisy Model vs. Noisy Label
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Understanding the Effects of
Pre-training Noise

Empirical Study



Effect of Pre-training Noise on Downstream

 Two pre-training paradigms/dataset
« YECC15M (and CC12M) — Image-Text Pair Contrastive Learning (CLIP)
* ImageNet1K— Fully-Supervised Learning (FS)

* Introduce noise into the datasets
* YFCC15M (and CC12M) — randomly swap the image-text pairs
* ImageNet1K - randomly swap the label

« Two models pre-trained of different scales: ResNet-50 and ViT-B-16
» for CLIP, ViT-B-16 is trained on YFCC15M+CC12M, and ResNet-50 on YFCC15M
* for FS, both are trained on ImageNet-1K

* Train models with noise ratios {0, 5, 10, 20, 30}%
* Heavy regularizations are adopted during pre-training



Downstream Classification Generalization

* [n-Domain (ID) Evaluation

14 vision datasets, including CIFAR-100, Flowers102, Food101,
RESISC45, DTD, etc.

» The training set and the testing set are of the same distribution

» Qut-of-Domain (OOD) Evaluation

« DomainNet: Clipart, Real, Sketch, Inpainting
* ImageNet-Variants: IN-v2, IN-R, IN-Sketch, IN-A, IN-Vid, ObjectNet
* The training set and the testing sets are of different distribution

* Report average performance over all datasets with various tuning
* Linear probing, LoRA (of ViT-B-16), full fine-tuning



ID Linear Probing Evaluation

R-50 IN-1K FS
| ' ' 66.0+
725 64.0¢
70.0+ 62.0+
2 675! &60.0}
g g _ |
8 65.0! y=0% | §°80f
"”‘:GME v=5% | <560}
60.0" —— oy = 20%
] —— 4 =30%
7.5 - - 50.0
0%  25%  50%  75%  100% :

Percentage of Samples

52.0 W/

R-50 YFCC15M CLIP

¥ = 0%
¥ =5%
v = 10%
¥ = 20%
¥ = 30%

%%  50%  75%
Percentage of Samples

10%

100%

VIT IN-1K FS

v = 0%
v = 5%
7= 10%
7= 20%
v = 30%

10%

25%

50% 5%  100%

Percentage of Samples

VIT YFCC15M+CC12M CLIP

~ = 0%
v = 5%
v = 10%
v = 20%
v = 30%

10%

25%

50% 5%  100%

Percentage of Samples

« Slight pre-training noise (5% or 10%) benefits ID classification tasks
 Further increase noise in pre-training hurts downstream performance



OOD Linear Probing Evaluation

R-50 IN-1K FS
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Accuracy (%)

ID Eval. with Different Tuning Methods
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* Different tuning methods on ID tasks present similar trends

* up to 5% or 10% can benetfit ID performance

* Differences between clean and noisy models become smaller
 with more pre-trained parameters modified at downstream tasks



OOD Eval. with Different Tuning Methods

R-50 IN-1K FS R-50 YFCC15M CLIP
e oen | |B1m mrim
o = 0% ° o= 10%

Accuracy (%)

LP

FT LP FT
Tuning Method Tuning Method

| Accuracy (%)

o]
o

o]
=

VIT IN-1K FS

5 &

-"y:ﬂ% --‘rzm

LP

v=5% By =30%
v = 10% o

LoRA FT
Tuning Method

Accﬁracyl (%)

o]
dy |

o]
=

VIT YFCC15M+CC12M CLIP

5 &

o =0% MNy5=2%
MW y=5% N~y=30%

--'}':lﬂ%

LP LoRA FT
Tuning Method

* Different tuning methods on OOD tasks present similar trends
* pre-train noise consistently hurts the performance

* Differences between clean and noisy models become smaller
 with more pre-trained parameters modified at downstream tasks




Detection and Segmentation Tasks

TABLE 4: Object detection results on COCO 2017 of IN-1K TABLE 5: Instance segmentation results on COCO 2017 of

ResNet-50 noisy FS pre-trained models. IN-1K ResNet-50 noisy FS pre-trained models.
Detection | Noise (%) | APP> AP  AP5Y Detection | Noise (%) | AP™ak  Apmask  Apmask
0 385 598 417 0 313 51.3 33.0
5 386 601 419 5 314 51.3 33.2
Faster R-CNN [19] 10 386 600 419 Mask R-CNN [21] 10 31.3 51.3 32.9
20 384 597 416 20 312 511 32.8
30 379 591 409 30 3030 499 32.1
0 383 582 409 0 322 527 33.6
5 384 584 409 5 327 532 34.2
RetinaNet [2(] 10 384 581 411 SOLOv2 [140] 10 324 528 33.9
20 379 577 404 20 320 522 33.6
30 370 568 391 30 314 513 325

 Evaluate IN-1K noisy pre-trained on COCO Detection and Segmentation

« Slight pre-training noise can also benefit other downstream tasks than
classification



Feature Space Analysis

Empirical Study



Singular Values Analysis

* Where do the superior ID performance (with slight noise) and the
inferior OOD performance stem from?

« \We conduct SVD on features of pre-trained models on
downstream tasks

 Singular Value Entropy (SVE): measures the flatness of singular value

distribution
D

SVE — Z i

D
=1 j 19; Zj:l Oj

 Largest Singular Value Ratio (LSVR): measures the ratio of the largest
singular value

o1

LSVR = —log
Zz‘zl i




ID — Singular Value Entropy

R-50 ImageNet-1K Fully Supervised

« y=0% Moo,
gﬂ f}r:ﬁ% I:I‘«-' *H;ﬁ y =
) iyl .0 m
80r = y=10% 1
= = 20¢
7oL 7 D% N
5'5 L "]-":3{]%#* ok & L :\
[ 4 1
e v . ]
ﬂ:Gﬁ ] _
= 50 =
L - * ®m 7
4071 - . *"i' v
‘.H
Bﬁ-"lﬂ'n

65 6.6 6.7 6.8 69 7.0 7.1
Singular Value Entropy

ID Accuracy

o
=

oo W
= O

o
=

o
=

R-50 YFCC15M CLIP

o =]
= O

b2
=

50

4 [ —

»

L | L q'iri !

=
y = 0% .

v = 5%
= v=10%
v =20%
v oy =30%

52 54 56

Singular Value Entropy

SVE and ID accuracy first increases then decreases, as the noise ratio increases

Slight pre-training noise encourages the model to use more capacity to fit the noise

A higher dimension of feature space, better-initialized features at the downstream

Noise further increases, more dimensions fitting the noise, less useful features at downstream



OOD - Largest Singular Value Ratio
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» LSVR consistently increases and OOD consistently decreases, as the noise
ratio increases

* More capacity in feature space is used for fitting noise, and less
transferable/dominant singular vectors are learned during pre-training



Mitigating the Noise on Downstream

» We propose a black-box fine-tuning method
« with an MLP projection head and a linear classification layer
« MLP is used for affine transformation of pre-trained features F to get Z

 NMTune defines 3 regularization terms during black-box fine-tuning
* encouraging consistency between pre-trained features and MLP-transformed features
7 2
Zl|z ||
* minimizing the covariance matrix of MLP-transformed features

1
Lcov = D Z[C(Z) 123
i#j
« maximizingthe largest singular value ratio of MLP-transformed features
o1

F
LysE = H —
I1Fll2 |

Lsyp = —
O'jzl



NMTune for ID tasks
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« Our method helps improve F1 score and SVE for ID tasks for both noisy
ImageNet-1K and YFCC15M pre-trained models

« Adding MLP only helps with F1 but produces lower SVE



NMTune for OOD tasks
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* Our method helps improve F1 score for OOD tasks
« Our method produces more consistent LSVR across noise ratios (MLP also does)



NMTune for LORA
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* NMTune also can be applied with LoRA to mitigate the pre-training
noise



Practical Large Models

* \ision Models

« JFT300M Semi-Supervised Pre-trained EfficientNet-B3
ImageNet-21K Fully-Supervised Pre-trained ResNetv2-152x2
ImageNet-21K Fully-Supervised Pre-trained Swin-L

Laion-2B CLIP Pre-trained ConvNext-L

Laion-2B CLIP Pre-trained ViT-L

ID: 14 datasets, OOD: DomainNet

» Language Models

« BERT-L, RoBERTa-L, GPT-2, text-ada-002 embedding AP
 ID: GLUE, OOD: GLUE-X



Practical Large Models

Table 1: Results on popular vision models that Table 2: Evaluation of our method on language
are pr.e—tramed on noisy datasetg. We use 14 1n- models in practice that are pre-trained on noisy
domain (ID) and 4 out-of-domain (OOD) tasks. datasets. We use GLUE for in-domain (ID) tasks

Pre-trained Tuning In-Domain Out-of-Domain and GLUE-X for out-of-domain (OOD) tasks.
Model Method | Acc. F1 Acc. F1

JET300M LP 7672 0.3815 | 44.13 03594 Pre-trained | Tuning | [ 5 . ut-of-Domain
Semi-Supervised | MLP | 76.87 0.3833 | 4595 0.3624 Model | Method
EfficientNet-B3 Ours 77.63 03874 | 46.84 0.3654 LP 69.44 50.65
ImageNet-21K | LP 7751 03718 | 40.82 0.3062 BERT-L MLP 69.78 50.62
Fully Supervised | MLP 77.58 03726 | 41.73 0.3053 Ours 70.26 51.63
ResNetv2-152x2 | Ours 78.43 0.3862 | 42.42 0.3100 LpP 69.75 44.55
ImageNet-21K | LP 81.91 0.4092 | 50.88 0.3838 ROBERTa.L | MLP 7027 4522
Fully Supervised | MLP | 82.51 0.4128 | 51.21 0.3811 Ours 70.97 47.01
Swin-L Ours 84.16 0.4177 | 5235 0.3901 - T 668
CLIP MLP | 88.53 04417 | 68.43 0.4304 Ours 50.34 39.07
ConvNext-L Ours 89.48 0.4457 | 70.30 0.4367 . '
Laion-2B LP 86.85 0.4328 | 66.89 0.4208 LP 36.96 44.06
CLIP MLP | 8723 04375 | 69.50 0.4221 text-ada-002 | MLP 63.89 51.30
ViT-L Ours | 88.57 0.4414 | 70.47 0.4246 Ours 65.99 53.48




Asymmetric Pre-training Noise

* Previous experiments mainly involve random pre-training noise
* noise can exist in all classes/concepts uniformly

* We also study asymmetric noise in ImageNet-1K
* find overlapped classes in IN-1K with CIFAR-100 using wordnet
* introduce noise only within these overlapped classes

* Downstream linear probing evaluation:
 noise-related ID: CIFAR-10, CIFAR-100
* noise-unrelated ID: Food-101, Caltech101, EuroSAT
« OOD: DomainNet



Asymmetric Pre-training Noise
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* Previous observations still manifest on asymmetric pre-training noise



Combining with Noisy Label Learning
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« Similar observation holds on NLL and NMTune also helps



Related Works on Pre-training Noise/Data

* NoisyTune  NEFTune

‘ Algorithm 1 NEFTune: Noisy Embedding Instruction Finetuning

Input: D = {z;,y;}' tokenized dataset, embedding layer emb(-), rest of model f /e (),

ABIR i model parameters 6, loss(-), optimizer opt(-)
! NEF T Hyperparameter: base noise scale o € R*
i Initialize @ from a pretrained model.
Task Data - P

! repeat (X;,Y;) ~D > sample a minibatch of data and labels

Xemb < emb(X;), RB*Lxd > batch size B, seq. length L, embedding dimension d
€ ~ Uniform(—1,1), RExLxd &> sample a noise vector
Xl  Xemb + (\/%)e > add scaled noise to embeds

Vie f Jem (X imp) > make prediction at noised embeddings
6 + opt(6,loss(¥;, Y;)) > train step, e.g., grad descent

until Stopping criteria met/max iterations.

Perturbed
PLM Task Data LM “If sequence lengths in a batch are not equivalent, then L is a vector € ZZ, and the scaling factor (o/v/Ld)
________________________________________________________________________ . is computed independently for each sequence in batch.
(b) NoisyTune

» Catastrophic Inheritance  Pre-trainer's Guide to LLM training data

Evaluate Change in

.. . . Pretrain
o - Performan
Pre-training Data Biases Foundation Models Downstream Impacts Select Pretraining Data Moddl Doa nzt:;: r:'eraos.r:( s
$&¥ Low Quality G Language - Generalization
Corruption, Noise, GPT-3, LLaMA, Vicuna, Performance, Failures Toxic Toxic Generation
Duplication, Contamination Claude, BERT — .. .
. . _— . = Trammg DYIlE.mlCS Toxic Identification
&% Skewed Distribution Vision Double Descent, Scaling Law
Imbalance, =» ViT, ResNet, ConvNext . . 2012 Eval Tasks
Out-of-distribution Privacy & Security
00 . . . Memorization, Jailbreak Vi 2020 Eval Tasks
& Unethical Content 82 Multimodality % Ethics & Bi quality ) 3
Privacy, Bias, Toxicity, Gemini, GPT-4, CLIP, -1 e las Domain-Specific
Harmfulness Stable Diffusion Misalignment, Fairness Knowledge

Chuhan Wu, et al. NoisyTune: A Little Noise Can Help You Finetune Pretrained Language Models Better.
Neel Jain, et al. NEFTUNE: Noisy Embedding Improve Instruction Fine-Tuning.

Hao Chen et al. On catastrophic inheritance of large foundation models.

Shayne Longpre et al. A pre-trainer’s guide to training data.



Conclusion

» \We propose Noisy Model Learning
* A novel research topic for studying and mitigating the pre-training noise

* \We found:

« Slight noise in pre-training benefits ID tasks, agnostic to model
architectures, pre-training proxy objectives, pre-training noise types,
downstream tuning methods, and downstream applications

« However, pre-training noise always hurts OOD tasks

« Malicious effects of pre-training noise can be mitigated at downstream
tasks through NMTune

 Future work includes other pre-training paradigms and other types
of pre-training biases
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