Understanding and Mitigating the Pre-training Noise on Downstream Tasks

Hao Chen, Jindong Wang, Ankit Shah, Ran Tao Hongxin Wei, Xing Xie, Masashi Sugiyama, Bhiksha Raj <u>haoc3@andrew.cmu.edu</u> <u>https://arxiv.org/pdf/2309.17002.pdf</u>

https://arxiv.org/abs/2403.06869.pdf

Content

- Background and Motivation of Noisy Model Learning
- Motivating Experiments on Effects of Pre-training Noise
- Feature Space Analysis of Pre-training Noise
- Mitigation of Pre-training Noise on Downstream Tasks
- More Experiments and Discussions

Background and Motivation

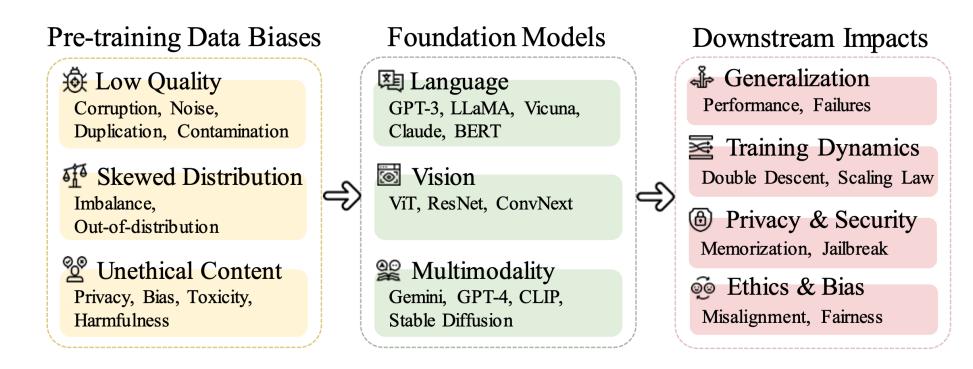
Catastrophic Inheritance of Large Foundation Models

Noisy Model Learning

Background – Large Foundation Models

- Large foundation models require massive pre-training data
 - Open CLIP 2.0 billion image-text pairs
 - Llama 2.0T tokens
- Adaption of foundation models
 - Pre-training on proxy tasks
 - Tuning on specific downstream tasks (linear probing, parameter efficient tuning, full fine-tuning, etc.)
- Success of foundation models attributed to the pre-training data
 - Large-scale pre-training data are usually collected from web
 - Inevitable noise (and other types of bias) in pre-training data that may lead to unexpected generalization performance and behavior

Pre-training Bias -> Catastrophic Inheritance



- Pre-training biases used to train foundation models may be inherited to downstream tasks with malicious impacts
- Unexplored direction yet very important and interesting

Examples of Catastrophic Inheritance

Example	Domain	Source
Stable Diffusion models was trained on Laion-5B, which contains hundreds of harmful images of child sexual abuse material (CSAM). Then, the model was reported to memorize during training and generate CSAM at production.	Ethics and privacy	[Birhane et al., 2023, Forbes, 2023, Thiel, 2023]
At least 50% of poisoning, adversarial, and backdoor vulnerabilities will be inherited from pre-training data to fine-tuned models, which can be easily triggered at the deployment. Jailbreaks may also relate to pre-training biases.	Security	[Wang et al., 2018, Zhang et al., 2022, Carlini et al., 2023a, Zou et al., 2023]
An MIT student asked AI to make her headshot more 'professional.' It gave her lighter skin and blue eyes. Country bias also found in language models.	Bias	[Boston.com, 2023, Wang et al., 2023a]
Fine-tuning LLMs on only 10 adversarially designed or even benign samples leads to degradation of safety alignment, which costs less than \$0.2 using API.	Misalignment	[Qi et al., 2023] Th
Noisy labels contained in pre-trained data always hurt downstream OOD performance; more than 10% noisy data will hurt in-domain performance.	Generalization	[Chen et al., 2024]
Large language models like GPT-3.5 exhibited an accuracy reduction of 18.12% when answering non-English medical questions. Similar for coding tasks.	Model behaviors	[Jin et al., 2024, Zheng et al.]
Noise in the pre-training data strengthen the double descent phenomena, where the critical point of LFMs overfitting/memorizing data appears earlier.	Training dynamics	[Nakkiran et al., 2019]

work

Table 1: Realistic examples of catastrophic inheritance from published papers or news.

Hao Chen et al. On catastrophic inheritance of large foundation models. 2024.

This Work: Inevitable Pre-training Noise

• Evidence in CLIP

- OpenAI trains CLIP on WIT-400M (not public)
- OpenCLIP trains CLIP on Laion-2B, with more noisy image-text pairs
- Yet they achieve similar zero-shot performance

	Data	Arch.	ImageNet	VTAB+
CLIP [55]	WIT-400M	L/14	75.5	55.8
Ours	LAION-2B	$\mathrm{L}/14$	75.2	54.6
Ours	LAION-2B	H/14	<u>78.0</u>	<u>56.4</u>

Inevitable Pre-training Noise

• Evidence in LLM

- Repeated data/corruption [2]
- Leads to memorization of these noise

OpenWebText		C4		mC4-en		OSCAR		The Pile	
<i>n</i> -gram	Count	<i>n</i> -gram	Count	<i>n</i> -gram	Count	n-gram		<i>n</i> -gram	Count
	3.4M	???????????	9M		1.76B		773M		3.64B
	1.05M		7.27M		823M	111111111	395M	========	602M
	830K		4.41M	$\mathbf{\hat{v}}$	349M		175M	* * * * * * * * *	188M
* * * * * * * * *	595K	* * * * * * * * *	3.87M	* * * * * * * * *	314M		91.6M) { ref - type = " fig " }	59.1M
# # # # # # # # #	302K	1111111111	1.91M	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	183M	* * * * * * * * *	34.9M	11111111	56.2M
amp ; amp ; amp ; amp ; amp ;	278K	. You can follow any responses to this entry through	784K	/s\/files\/1\/	183M		22.9M		54.9M
; amp ; amp ; amp ; amp ; amp	265K		753K	$\/\$ cdn.shopify.com $\/\$ s $\/$	182M	(Opens in new window) Click to share on	15.7M	#########	38.3M
	249K	You can follow any responses to this entry through the	752K	/ cdn.shopify.com \/ s \/ files \/	182M	Log Out / Change) You are commenting using your	13.6M	}	30.1M
	88.1K	can follow any responses to this entry through the RSS	752K	\/cdn.shopify.com \/s \/files \	182M	(Log Out / Change) You are commenting using	13.6M	$\{ ref - type = "fig" \} \}$	28.9M
~ ~ ~ ~ ~ ~ ~ ~ ~ ~	83.3K	follow any responses to this entry through the RSS 2.0	748K	/ \ / cdn.shopify.com \ / s \ / files	182M	. (Log Out / Change) You are commenting	13.6M	}=======	21.8M
RedPajama		S2ORC		peS2o		LAION-2B-en		The Stack	
<i>n</i> -gram	Count	<i>n</i> -gram	Count	n-gram	Count	n-gram	Count	<i>n</i> -gram	Count
	670M	9999999999	30.2M		1.42M		1.65M		4.29B
	507M		5.49M	[1][2][3][457K	$\diamond \diamond $	1.43M	* * * * * * * * *	3.87B
	213M	++++++++	3.03M][2][3][4]	453K		1.15M	000000000	2.75B
* * * * * * * * *	195M	* * * * * * * * *	1.93M	1][2][3][4	453K	11111111	809K		2.62B
	145M	0 0 0 0 0 0 0 0 0	1.73M	[5][6][7][450K	< br / > < br / > < br	797K	, " resolved " : " https : / /	1.46B
////////	79.3M		1.56M	[6][7][8][448K	/> br/> 	796K	", " resolved ": " https:/	1.46B
//.	35.3M		1.11M][6][7][8]	448K	br / > < br / > < br /	796K	" resolved " : " https : / / registry.npmjs.org	1.42B
.//	35.3M	[5][6][7][646K	5][6][7][8	446K	> < br / > < br / > <	576K	resolved ": " https://registry.npmjs.org /	1.42B
111	35.2M	[1][2][3][][7][8][9]	446K	Price : 1 Credit (USD \$ 1)	437K	,,,,,,,,,	1 B
#########	33M	[6][7][8][644K	6][7][8][9	444K	vector Price : 1 Credit (USD \$ 1	437K	. tgz ", " integrity ": " sha512	938M

Noisy Model Learning

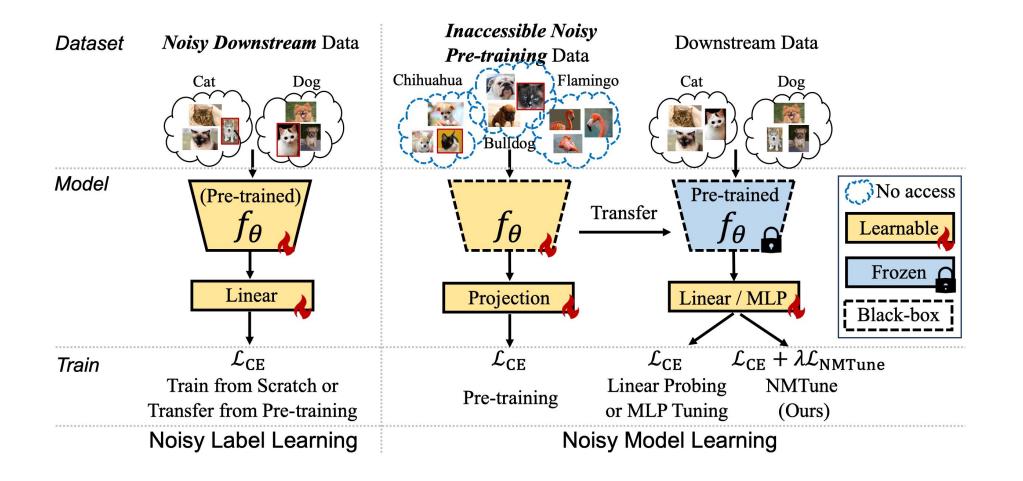
- Noisy Label Learning
 - Data of downstream task contain noise
 - Noise hurts downstream performance
 - Improve the model performance when downstream contains noise
 - Many techniques, widely studied
- Noisy Model Learning (of foundation models)
 - Data of pre-training task contain noise
 - Data of downstream tasks are clean (or noisy)
 - Does the pre-training noise affect the downstream generalization? If so, how?
 - Unexplored before, perhaps intuitively believe the cleaner, the better

Motivation on Noisy Model Learning

Noisy Model Learning (of foundation models)

- How does the noise in pre-training data affect the performance of pretrained models on downstream tasks?
- How can we mitigate the detrimental effect of pre-training noise on downstream, if any?
- Possible black-box and noisy pre-training data
 - Massive size, expired urls...
- Possible (partially) black-box pre-trained models
 - Private models
 - Expensive computational requirement of full fine-tuning

Noisy Model vs. Noisy Label



Understanding the Effects of Pre-training Noise

Empirical Study

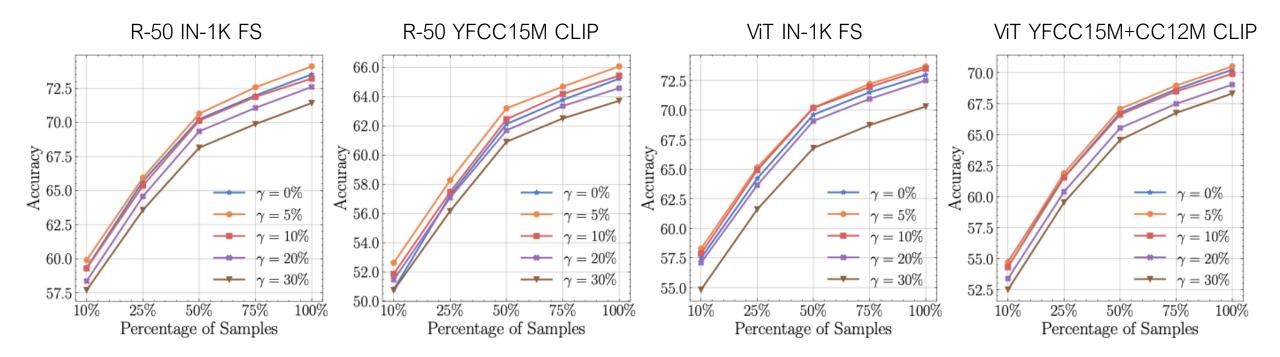
Effect of Pre-training Noise on Downstream

- Two pre-training paradigms/dataset
 - YFCC15M (and CC12M) Image-Text Pair Contrastive Learning (CLIP)
 - ImageNet1K Fully-Supervised Learning (FS)
- Introduce noise into the datasets
 - YFCC15M (and CC12M) randomly swap the image-text pairs
 - ImageNet1K randomly swap the label
- Two models pre-trained of different scales: ResNet-50 and ViT-B-16
 - for CLIP, VIT-B-16 is trained on YFCC15M+CC12M, and ResNet-50 on YFCC15M
 - for FS, both are trained on ImageNet-1K
- Train models with noise ratios {0, 5, 10, 20, 30}%
 - Heavy regularizations are adopted during pre-training

Downstream Classification Generalization

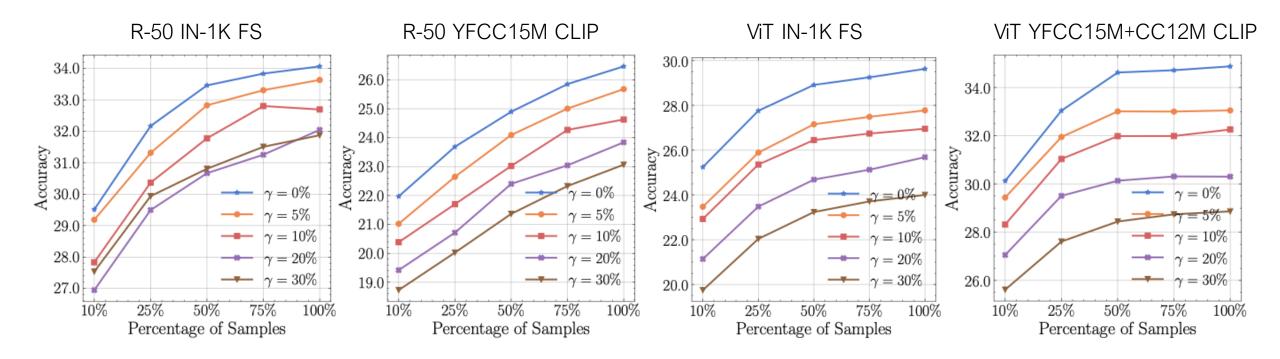
- In-Domain (ID) Evaluation
 - 14 vision datasets, including CIFAR-100, Flowers102, Food101, RESISC45, DTD, etc.
 - The training set and the testing set are of the same distribution
- Out-of-Domain (OOD) Evaluation
 - DomainNet: Clipart, Real, Sketch, Inpainting
 - ImageNet-Variants: IN-v2, IN-R, IN-Sketch, IN-A, IN-Vid, ObjectNet
 - The training set and the testing sets are of different distribution
- Report average performance over all datasets with various tuning
 - Linear probing, LoRA (of ViT-B-16), full fine-tuning

ID Linear Probing Evaluation



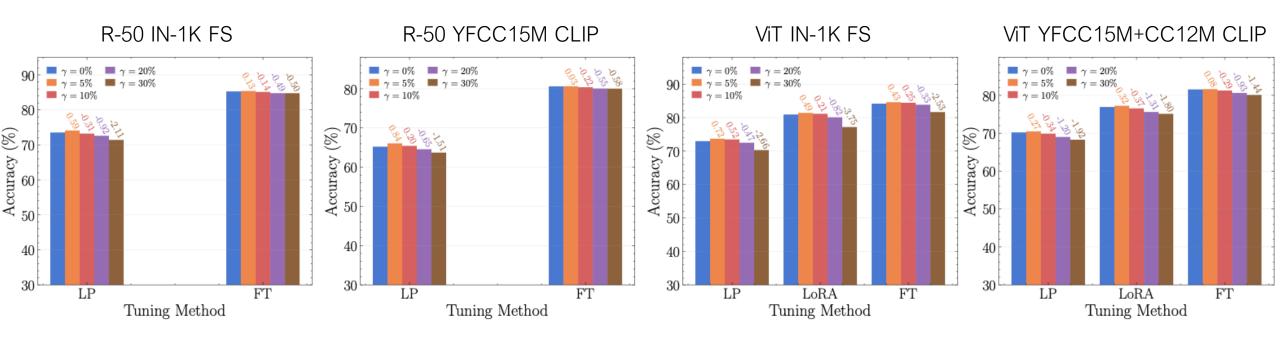
- Slight pre-training noise (5% or 10%) benefits ID classification tasks
- Further increase noise in pre-training hurts downstream performance

OOD Linear Probing Evaluation



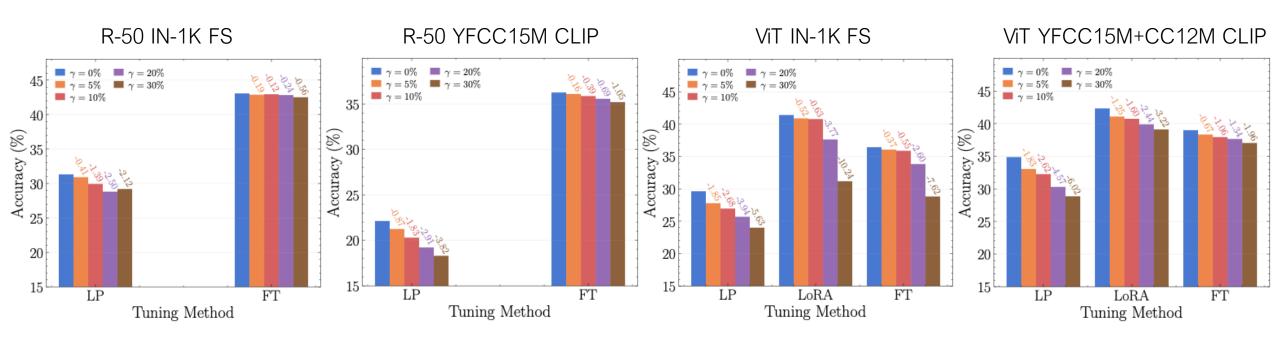
- Pre-training noise always deteriorates OOD tasks
- As noise ratio increases, the performance consistently decreases

ID Eval. with Different Tuning Methods



- Different tuning methods on ID tasks present similar trends
 - up to 5% or 10% can benefit ID performance
- Differences between clean and noisy models become smaller
 - with more pre-trained parameters modified at downstream tasks

OOD Eval. with Different Tuning Methods



- Different tuning methods on OOD tasks present similar trends
 - pre-train noise consistently hurts the performance
- Differences between clean and noisy models become smaller
 - with more pre-trained parameters modified at downstream tasks

Detection and Segmentation Tasks

TABLE 4: Object detection results on COCO 2017 of IN-1KTABLE 5: Instance segmentation results on COCO 2017 ofResNet-50 noisy FS pre-trained models.IN-1K ResNet-50 noisy FS pre-trained models.

Detection	Noise (%)	AP ^{box}	AP_{50}^{box}	AP_{75}^{box}
	0	38.5	59.8	41.7
	5	38.6	60.1	41.9
Faster R-CNN [19]	10	38.6	60.0	41.9
	20	38.4	59.7	41.6
	30	37.9	59.1	40.9
	0	38.3	58.2	40.9
	5	38.4	58.4	40.9
RetinaNet [20]	10	38.4	58.1	41.1
	20	37.9	57.7	40.4
	30	37.0	56.8	39.1

Detection	Noise (%)	AP ^{mask}	AP_{50}^{mask}	$\operatorname{AP^{mask}_{75}}$
	0	31.3	51.3	33.0
	5	31.4	51.3	33.2
Mask R-CNN [21]	10	31.3	51.3	32.9
	20	31.2	51.1	32.8
	30	30.30	49.9	32.1
	0	32.2	52.7	33.6
	5	32.7	53.2	34.2
SOLOv2 140]	10	32.4	52.8	33.9
	20	32.0	52.2	33.6
	30	31.4	51.3	32.5

- Evaluate IN-1K noisy pre-trained on COCO Detection and Segmentation
- Slight pre-training noise can also benefit other downstream tasks than classification

Feature Space Analysis

Empirical Study

Singular Values Analysis

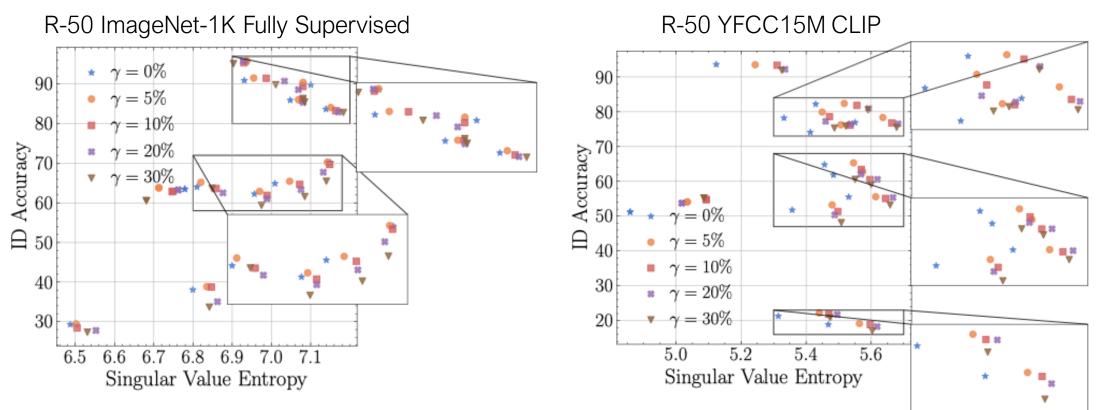
- Where do the superior ID performance (with slight noise) and the inferior OOD performance stem from?
- We conduct SVD on features of pre-trained models on downstream tasks
 - Singular Value Entropy (SVE): measures the flatness of singular value distribution

$$ext{SVE} = -\sum_{i=1}^{D} rac{\sigma_i}{\sum_{j=1}^{D} \sigma_j} ext{log} rac{\sigma_i}{\sum_{j=1}^{D} \sigma_j} ext{log}$$

• Largest Singular Value Ratio (LSVR): measures the ratio of the largest singular value

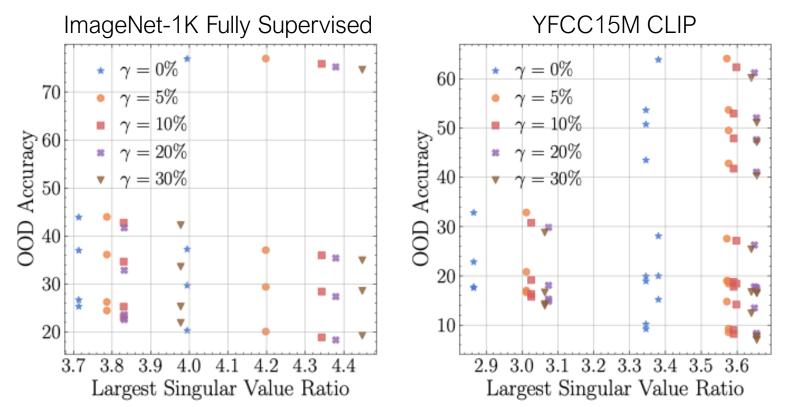
$$ext{LSVR} = -\lograc{\sigma_1}{\sum_{i=1}^D \sigma_i}$$

ID – Singular Value Entropy



- SVE and ID accuracy first increases then decreases, as the noise ratio increases
- Slight pre-training noise encourages the model to use more capacity to fit the noise
- A higher dimension of feature space, better-initialized features at the downstream
- Noise further increases, more dimensions fitting the noise, less useful features at downstream

OOD – Largest Singular Value Ratio



- LSVR consistently increases and OOD consistently decreases, as the noise ratio increases
- More capacity in feature space is used for fitting noise, and less transferable/dominant singular vectors are learned during pre-training

Mitigating the Noise on Downstream

- We propose a black-box fine-tuning method
 - with an MLP projection head and a linear classification layer
 - MLP is used for affine transformation of pre-trained features F to get Z
- NMTune defines 3 regularization terms during black-box fine-tuning
 - encouraging consistency between pre-trained features and MLP-transformed features

$$\mathcal{L}_{ ext{MSE}} = \left\|rac{\mathbf{F}}{\|\mathbf{F}\|_2} - rac{\mathbf{Z}}{\|\mathbf{Z}\|_2}
ight\|_2^2$$

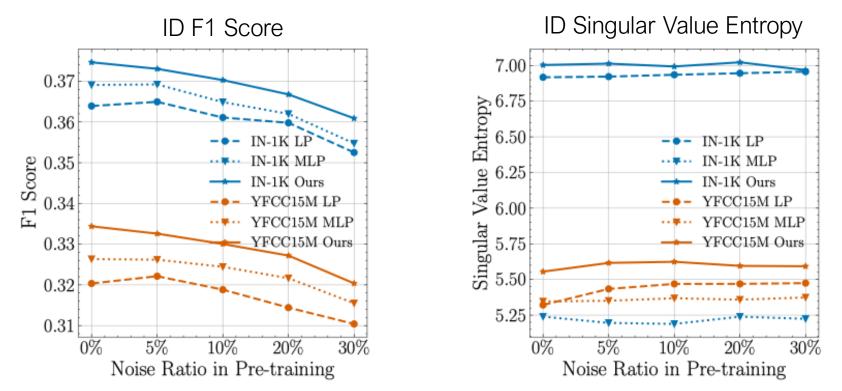
• minimizing the covariance matrix of MLP-transformed features

$$\mathcal{L}_{ ext{COV}} = rac{1}{D} \sum_{i
eq j} [C(\mathbf{Z})]_{i,j}^2$$

• maximizing the largest singular value ratio of MLP-transformed features

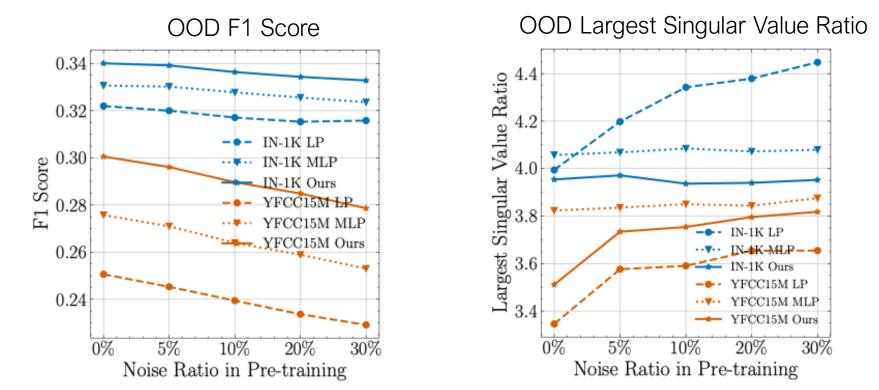
$$\mathcal{L}_{ ext{SVD}} = -rac{\sigma_1}{\sum_j^D \sigma_{j=1}}$$

NMTune for ID tasks



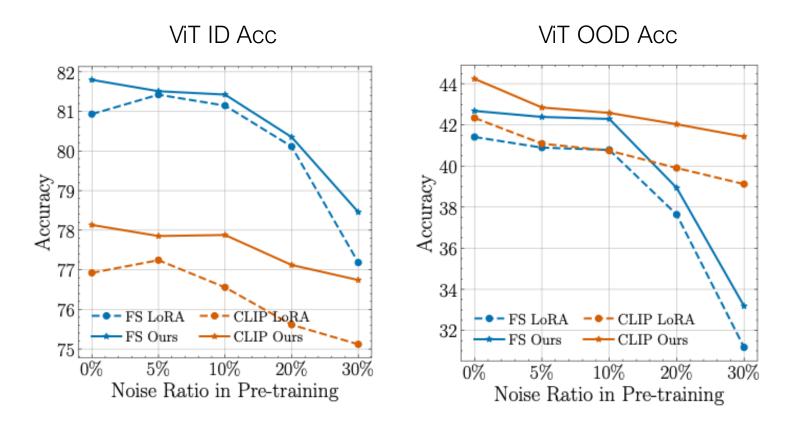
- Our method helps improve F1 score and SVE for ID tasks for both noisy ImageNet-1K and YFCC15M pre-trained models
- Adding MLP only helps with F1 but produces lower SVE

NMTune for OOD tasks



- Our method helps improve F1 score for OOD tasks
- Our method produces more consistent LSVR across noise ratios (MLP also does)

NMTune for LoRA



NMTune also can be applied with LoRA to mitigate the pre-training noise

Practical Large Models

- Vision Models
 - JFT300M Semi-Supervised Pre-trained EfficientNet-B3
 - ImageNet-21K Fully-Supervised Pre-trained ResNetv2-152x2
 - ImageNet-21K Fully-Supervised Pre-trained Swin-L
 - Laion-2B CLIP Pre-trained ConvNext-L
 - Laion-2B CLIP Pre-trained ViT-L
 - ID: 14 datasets, OOD: DomainNet
- Language Models
 - BERT-L, RoBERTa-L, GPT-2, text-ada-002 embedding API
 - ID: GLUE, OOD: GLUE-X

Practical Large Models

Table 1: Results on popular vision models that are pre-trained on noisy datasets. We use 14 indomain (ID) and 4 out-of-domain (OOD) tasks.

Pre-trained	Tuning	6		Out-of-Domain		
Model	Method	Acc.	F1	Acc.	F1	
JFT300M	LP	76.72	0.3815	44.13	0.3594	
Semi-Supervised	MLP	76.87	0.3833	45.95	0.3624	
EfficientNet-B3	Ours	77.63	0.3874	46.84	0.3654	
ImageNet-21K	LP	77.51	0.3718	40.82	0.3062	
Fully Supervised	MLP	77.58	0.3726	41.73	0.3053	
ResNetv2-152x2	Ours	78.43	0.3862	42.42	0.3100	
ImageNet-21K	LP	81.91	0.4092	50.88	0.3838	
Fully Supervised	MLP	82.51	0.4128	51.21	0.3811	
Swin-L	Ours	84.16	0.4177	52.35	0.3901	
Laion-2B	LP	88.86	0.4432	66.86	0.4253	
CLIP	MLP	88.53	0.4417	68.43	0.4304	
ConvNext-L	Ours	89.48	0.4457	70.30	0.4367	
Laion-2B	LP	86.85	0.4328	66.89	0.4208	
CLIP	MLP	87.23	0.4375	69.50	0.4221	
ViT-L	Ours	88.57	0.4414	70.47	0.4246	

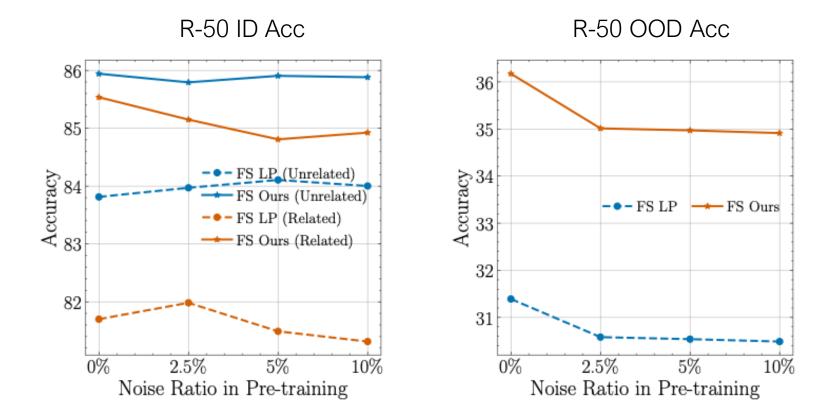
Table 2: Evaluation of our method on language models in practice that are pre-trained on noisy datasets. We use GLUE for in-domain (ID) tasks and GLUE-X for out-of-domain (OOD) tasks.

Pre-trained Model	Tuning Method	In-Domain	Out-of-Domain
	LP	69.44	50.65
BERT-L	MLP	69.78	50.62
	Ours	70.26	51.63
	LP	69.75	44.55
RoBERTa-L	MLP	70.27	45.22
	Ours	70.97	47.01
	LP	58.67	36.68
GPT-2	MLP	58.44	37.24
	Ours	59.34	39.07
	LP	56.96	44.06
text-ada-002	MLP	63.89	51.30
	Ours	65.99	53.48

Asymmetric Pre-training Noise

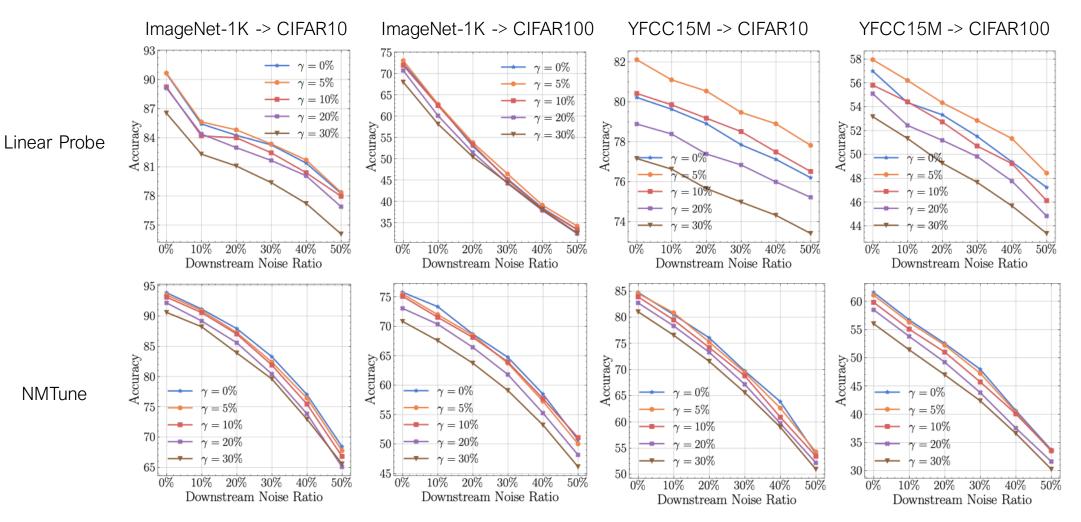
- Previous experiments mainly involve random pre-training noise
 - noise can exist in all classes/concepts uniformly
- We also study asymmetric noise in ImageNet-1K
 - find overlapped classes in IN-1K with CIFAR-100 using wordnet
 - introduce noise only within these overlapped classes
- Downstream linear probing evaluation:
 - noise-related ID: CIFAR-10, CIFAR-100
 - noise-unrelated ID: Food-101, Caltech101, EuroSAT
 - OOD: DomainNet

Asymmetric Pre-training Noise



• Previous observations still manifest on asymmetric pre-training noise

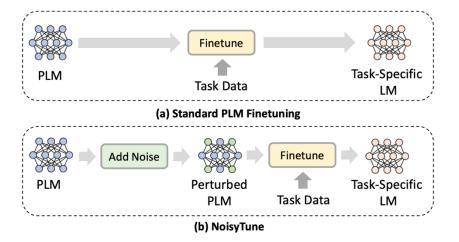
Combining with Noisy Label Learning



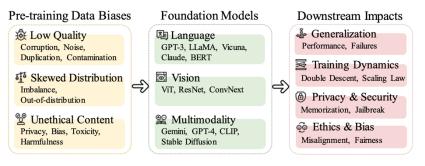
Similar observation holds on NLL and NMTune also helps

Related Works on Pre-training Noise/Data

• NoisyTune



Catastrophic Inheritance

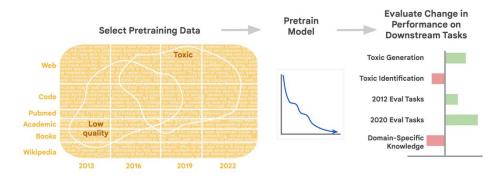


• NEFTune

Input: $\mathcal{D} = \{x_i, y_i\}_1^N$ tokenized datas	set, embedding layer emb(·), rest of model $f_{/emb}(\cdot)$,
model parameters θ , loss(\cdot), optimizer	$opt(\cdot)$
NEFT Hyperparameter: base noise sca	le $\alpha \in \mathbb{R}^+$
Initialize θ from a pretrained model.	
repeat $(X_i, Y_i) \sim \mathcal{D}$	\triangleright sample a minibatch of data and labels
$X_{\text{emb}} \leftarrow \text{emb}(X_i), \mathbb{R}^{B \times L \times d}$	\triangleright batch size B, seq. length L, embedding dimension d
$\epsilon \sim \text{Uniform}(-1,1), \mathbb{R}^{B \times L \times d}$	⊳ sample a noise vector
$X'_{\text{emb}} \leftarrow X_{\text{emb}} + (\frac{\alpha}{\sqrt{Ld}})\epsilon$	\triangleright add scaled noise to embeds ^{<i>a</i>}
$\hat{Y}_i \leftarrow f_{/\text{emb}}(X'_{\text{emb}})$	make prediction at noised embeddings
$\theta \leftarrow \text{opt}(\theta, \text{loss}(\hat{Y}_i, Y_i))$	⊳ train step, e.g., grad descent
until Stopping criteria met/max iterati	ons.

^{*a*}If sequence lengths in a batch are not equivalent, then *L* is a vector $\in \mathbb{Z}_{>0}^{B}$ and the scaling factor (α/\sqrt{Ld}) is computed independently for each sequence in batch.

• Pre-trainer's Guide to LLM training data



Chuhan Wu, et al. NoisyTune: A Little Noise Can Help You Finetune Pretrained Language Models Better. Neel Jain, et al. NEFTUNE: Noisy Embedding Improve Instruction Fine-Tuning. Hao Chen et al. On catastrophic inheritance of large foundation models. Shayne Longpre et al. A pre-trainer's guide to training data.

Conclusion

- We propose Noisy Model Learning
 - A novel research topic for studying and mitigating the pre-training noise
- We found:
 - Slight noise in pre-training benefits ID tasks, agnostic to model architectures, pre-training proxy objectives, pre-training noise types, downstream tuning methods, and downstream applications
 - However, pre-training noise always hurts OOD tasks
 - Malicious effects of pre-training noise can be mitigated at downstream tasks through NMTune
- Future work includes other pre-training paradigms and other types of pre-training biases

Thanks

Hao Chen, haoc3@andrew.cmu.edu

https://arxiv.org/pdf/2309.17002.pdf

