Syntnhetic Data: The New Frontier

A lifelong learning guide into harnessing generative models powers
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From Supervised Training to
Generative supervised Training
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Figure 1. Top: Classification Accuracy Scores [45] show that
models trained on generated data are approaching those trained on
real data. Bottom: Augmenting real training data with generated
images from our ImageNet model boosts classification accuracy
for ResNet and Transformer models.

Azizi, Shekoofeh, Simon Kornblith, Chitwan Saharia, Mohammad Norouzi, and David J. Fleet. "Synthetic data from diffusion models improves imagenet

classification.” arXiv preprint arXiv-2304.08466 (2023). Yu, Zhuoran, Chenchen Zhu, Sean Culatana, Raghuraman Krishnamoorthi, Fanyi Xiao, and Yong Jae Lee. "Diversify, Don't Fine-Tune: Scaling Up Visual Recognition Training with Synthetic Images." arXiv preprint arXiv:2312.02253 (2023).
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Figure 2. Illustration of our proposed approach. Given a batch of tasks represented by Task2Vec representations, our approach
(Task2S1m) aims to map these representations to optimal simulation parameters for generating a dataset of synthetic images. The down-
stream classifier’s accuracy for the set of tasks is then used as a reward to update Task2Sim’s parameters. Once trained, Task2Sim can be
used not only for “seen’ tasks but also can be used in one-shot to generate simulation parameters for novel “unseen’ tasks.

Mishra, Samarth, Rameswar Panda, Cheng Perng Phoo, Chun-Fu Richard Chen, Leonid Karlinsky, Kate Saenko, Venkatesh Saligrama, and Rogerio S. Feris. "Task2sim: Towards effective pre-training and transfer from synthetic data." In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 9194-9204. 2022.
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Figure 2: Pipeline Overview. From a set of concepts C (left), we obtain a set of synthetic captions 7 with an LLM, further
refined to 7" by a filtering operation which subsamples 7 using balanced sampling (top). The generated captions are then
used to prompt a text-to-image model, obtaining synthetic images aligned with the prompt (bottom). Finally, we train CLIP
encoders on the generated synthetic text-image pairs. (right)

Hammoud, Hasan Abed Al Kader, Hani Itani, Fabio Pizzati, Philip Torr, Adel Bibi, and Bernard Ghanem. "SynthCLIP: Are We Ready for a Fully Synthetic CLIP Training?." arXiv preprint arXiv:2402.01832 (2024).



Published as a conference paper at ICLR 2024

Exploring the application of synthetic audio in training keyword spotters
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The study of keyword spotting, a subfield within the broader
field of speech recognition that centers around identifying indi-
vidual keywords in speech audio, has gained particular impor-
tance in recent years with the rise of personal voice assistants
such as Alexa. As voice assistants aim to rapidly expand to
support new languages, keywords, and use cases, stakeholders
face the issue of limited training data for these unseen scenarios.
This paper details some initial exploration into the application
of Text-To-Speech (TTS) audio as a “helper” tool for training
keyword spotters in these low-resource scenarios. In the exper-
iments studied in this paper, the careful mixing of TTS audio
with human speech audio during training led to a reduction of
over 11% in the detection-error-tradeoff (DET) area under the
curve (AUC) metric.

Index Terms: keyword spotting, speech recognition, data aug-
mentation, speech synthesis

1. Introduction

Over the past few years, voice assistants such as Amazon’s
Alexa, Google Assistant, and Apple’s Siri have risen rapidly
in popularity, to the point that they have become a staple of
everyday life for many people across the globe. Alexa, in par-
ticular, now has tens of millions of users who interact with their

uation; Section 4 details the experimental results; and Section
5 summarizes the conclusions and future work to build on the
results.

2. Related Work

Some previous research has been dedicated to the ap-
plication of synthetic audio in training automatic speech
recognition (ASR) systems. Large vocabulary ASR mod-
els of architectures varying from Gaussian Mixture Models
(GMM)/Hidden Markov Models (HMM) [5] to Convolutional
Neural Network(CNN)/Connectionist Temporal Classification
(CTC) models [6] to more modern attention-based acoustic-to-
word models [7, 8] have all been shown to benefit from the ad-
dition of TTS data at varying levels and stages. However, it is
worth noting that there may be limits to these benefits, as it has
been shown that bispectral analysis can still differentiate with
confidence between audio generated with state-of-the-art TTS
systems and human audio[9], indicating that a mismatch may
still exist between synthetic training audio and organic evalua-
tion audio.

Regardless, the application of synthetic data in training
low-resource keyword spotter systems has shown promise in
recent experiments. Specifically, it was demonstrated that by
utilizing a pre-trained speech-embedding model with approxi-

mataluy ANNK naramatarce and weiachtc initializad ncina hiiman

ABSTRACT

Recently, it has been shown that for offline deep reinforcement learning (DRL),
pre-training Decision Transformer with a large language corpus can improve
downstream performance (Reid et al., 2022). A natural question to ask is whether
this performance gain can only be achieved with language pre-training, or can be
achieved with simpler pre-training schemes which do not involve language. In
this paper, we first show that language is not essential for improved performance,
and indeed pre-training with synthetic IID data for a small number of updates
can match the performance gains from pre-training with a large language corpus;
moreover, pre-training with data generated by a one-step Markov chain can further
improve the performance. Inspired by these experimental results, we then consider
pre-training Conservative Q-Learning (CQL), a popular offline DRL algorithm,
which is Q-learning-based and typically employs a Multi-Layer Perceptron (MLP)
backbone. Surprisingly, pre-training with simple synthetic data for a small number
of updates can also improve CQL, providing consistent performance improvement
on D4RL Gym locomotion datasets. The results of this paper not only illustrate the
importance of pre-training for offline DRL but also show that the pre-training data
can be synthetic and generated with remarkably simple mechanisms.

Werchniak, Andrew, Roberto Barra Chicote, Yuriy Mishchenko, Jasha Droppo, Jeff Condal, Peng Liu, and Anish Shah.
"Exploring the application of synthetic audio in training keyword spotters." In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7993-7996. IEEE, 2021.

Wang, Zecheng, Che Wang, Zixuan Dong, and Keith Ross. "Pre-training with Synthetic Data Helps Offline Reinforcement
Learning." arXiv preprint arXiv:2310.00771 (2023).
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Figure 1. Scaling ability (i.e., the slope of the power law curve
between loss and dataset size fitted in the log space, see Eq. 2)
comparison between real and synthetic images on supervised clas-
sifier and CLIP training. Red bars represent real images and blue
bars represent synthetic images generated with different text-to-
image models. Supervised models are trained on real or synthetic
ImageNet, and text in parentheses is the text prompt used to gen-
erate the images (details in Section 3.1). ImageNet-Sketch and
ImageNet-R are out-of-distribution tests. CLIP models are trained
on LAION-400M with real or synthetic images. We see that: (1)
scaling ability of synthetic data is slightly worse than that of real
data for CLIP training; (2) robustness on ImageNet-Sketch and
ImageNet-R datasets can be better when training on synthetic data.
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Figure 9. Scaling behavior for CLIP models trained on LAION-
400M subsets of different scales. Models are trained with syn-
thetic, real, or a combination of synthetic and real images, and are
evaluated with ImageNet zero-shot accuracy. Dataset scale here
refers to the number of captions.

Fan, Lijie, Kaifeng Chen, Dilip Krishnan, Dina Katabi, Phillip Isola, and Yonglong Tian. "Scaling laws of synthetic images for model training... for now." arXiv preprint arXiv:2312.04567 (2023).
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Figure 2. Recognizability vs. diversity plot for
various synthetic image generation configurations
(as in Section 4.2), colored by the performance
at 1.3M on ImageNet validation set (measured by
negative log loss). Deeper color stands for smaller
loss and better performance.
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Figure 3. Scaling on ImageNet validation set for various configurations as in Sec-
tion 4.3. Loss and data scale follows the power-law (as in Equation 2) with varied
k when data is less than 4M. By tuning the CFG scale, text prompts and text-
to-image models, the scaling behavior for synthetic images can be significantly
improved (from light blue to orange). Red dashed line 1s for real images. Orange
and blue dotted lines are ViT-L backbones, extending the power-law to 8M.

Fan, Lijie, Kaifeng Chen, Dilip Krishnan, Dina Katabi, Phillip Isola, and Yonglong Tian. "Scaling laws of synthetic images for model training... for now." arXiv preprint arXiv:2312.04567 (2023).
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FROM CATEGORIES TO CLASSIFIER: NAME-ONLY
CONTINUAL LEARNING BY EXPLORING THE WEB

Ameya Prabhu'* Hasan Abed Al Kader Hammoud!?* Ser-Nam Lim® Bernard Ghanem?
Philip H.S. Torr! Adel Bibi'

1University of Oxford 2KAUST 3Meta Al

ABSTRACT

Continual Learning (CL) often relies on the availability of extensive annotated
datasets, an assumption that is unrealistically time-consuming and costly in prac-
tice. We explore a novel paradigm termed name-only continual learning where
time and cost constraints prohibit manual annotation. In this scenario, learn-
ers adapt to new category shifts using only category names without the luxury
of annotated training data. Our proposed solution leverages the expansive and
ever-evolving internet to query and download uncurated webly-supervised data
for image classification. We investigate the reliability of our web data and find
them comparable, and in some cases superior, to manually annotated datasets.
Additionally, we show that by harnessing the web, we can create support sets
that surpass state-of-the-art name-only classification that create support sets using
generative models or image retrieval from LAION-5B, achieving up to 25% boost
in accuracy. When applied across varied continual learning contexts, our method
consistently exhibits a small performance gap in comparison to models trained on
manually annotated datasets. We present EvoTrends, a class-incremental dataset
made from the web to capture real-world trends, created in just minutes. Overall,
this paper underscores the potential of using uncurated webly-supervised data to
mitigate the challenges associated with manual data labeling in continual learning.

Prabhu, Ameya, Hasan Abed Al Kader Hammoud, Ser-Nam Lim, Bernard Ghanem, Philip HS Torr, and Adel Bibi. "From Categories to Classifier: Name-Only Continual Learning by Exploring the Web." arXiv preprint arXiv:2311.11293 (2023).
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Figure 1: Continual Name-Only Classification: Our Approach. At each timestep ¢, the learner
receives a list of class categories without any training samples. We start by collecting webly-
supervised data through querying and downloading data from multiple search engines. We then

extract features using a frozen backbone, and subsequently train a linear layer on those features.
The same process 1s repeated for the next timestep.

Prabhu, Ameya, Hasan Abed Al Kader Hammoud, Ser-Nam Lim, Bernard Ghanem, Philip HS Torr, and Adel Bibi. "From Categories to Classifier: Name-Only Continual Learning by Exploring the Web." arXiv preprint arXiv:2311.11293 (2023).
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Fig. 10: Prompt Refiner Module (v): Given a |concept|, 1 utilizes a pretrained frozen
LLM to generate fine-grained prompt-rewrites in a two-step process.

LLM GISTEmbed-L [115]|mxbai-embed-L"" |Sentence-T5-B [84]|LaBSE [37]|Jina-v2 [44]
GPT-3.5 [17] 0.8992 0.8811 0.944 0.7602 0.9089
Gemini [121] 0.8088 0.8544 0.9137 0.7187 | 0.8987
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Meta prompt

Average RMD score

A black and white image of [concept| highlighting dramatic contrasts.
A minimalist image of |concept| using clean lines and muted colors.
A photo of [concept| in analogous colors.

A photo of |[concept| in complementary colors.

A photo of |[concept| in earth tones.

A photo of |concept| in neutral tones.

This is an image of the |concept].

A realistic image of |concept].

A vintage photograph of |concept| with a warm, faded aesthetic.

A high-resolution photo of [concept| capturing fine details.

-3.471
-1.153
-0.618
-1.216
1.568
1.779
0.492
1.203
2.425
-0.446
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Table 1: Comparison of ensemble methods in PACS [144[, using DER. [18] for all en-
semble methods. The proposed ensemble method outperforms other ensemble methods.

ID OO0OD
E ble Method A
HSCHILIC eLHO AAUC T Alast T AAUC T Alast T

None (Baseline) 47.34+2.64 44.644+3.08 31.33+1.71 25.361+1.31
Equal weight ensemble  43.3942.01 36.324+2.76 29.77+£1.74 21.47+1.73
k-highest RMD ensemble 50.13+1.99 41.60+£3.79 31.2841.23 26.66+1.46
k-lowest RMD ensemble 31.16+0.87 21.60+2.66 25.45+1.56 11.95+1.33
Inverse Prob 40.48+1.72 23.74+0.97 27.984+0.91 20.13+1.37
DISCOBER (Ours) 50.22+2.41 45.10+1.69 32.77+1.62 28.78+1.49
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Results



Table 2: Split of in-distribution (ID) domain and out-of-distribution (OOD) domain
for each domain generalization benchmark.

Dataset ID domain OOD domain
PACS [144] Photo Art, Cartoon, Sketch
DomainNet [83] Real Clipart, Painting, Sketch
CIFAR-10-W [118)] i CIFAR-10-W [118)]
CCT |12] 10 locations 10 other locations

Table 6: Task configurations for class-IL setup on each domain generalization dataset.

Dataset total # of classes|# of tasks| # of classes / task
PACS [144] 7 3 2 (only initial task: 3)
DomainNet [83] 345 5 69
CIFAR-10-W [118] 10 5 2

CCT [12] 12 4 3




PACS DomainNet
Method Training Data D 00D D 00D
Aavce 1T Alast T Aavce T Alast T Aave T Atast T Aave T Atast T
Web-scraped 53.08+2.73 50.914+2.57 29.014+2.17 24.704+0.83 31.98+0.38 23.294+0.22 9.974+0.23 6.97+0.13
Base Prompt 46.33+1.75 45.344+3.60 27.96+1.69 20.474+1.39 25.134+0.38 21.38+0.71 7.2840.15 5.2940.13
ER [99] (—I—) Diversified Prompt 47.95+£2.20 45.584+3.00 34.11+1.33 27.13+£1.69 25.23+0.31 20.724+0.35 9.15+0.26 7.3540.04
(+) Gen. Ensemble 53.83+2.96 51.684+2.68 35.69+1.62 30.09+1.42 28.5240.07 24.02+0.86 11.42+0.04 9.67+0.47
Manually Annotated 70.214+3.71 72.114+1.57 28.53+1.81 22.08+1.31 48.56+0.23 40.2240.55 12.684+0.10 10.1940.18
Web-scraped 47454447 44.574+5.26 27.97+2.20 18.174+1.55 32.39+4+0.31 23.36+0.32 10.254+0.23 7.26+0.07
Base Prompt 49.344+2.11 46.71+0.83 28.244+1.56 21.00+2.16 24.814+0.43 21.174+0.32 7.234+0.22 5.734+0.15
ER-MIR [3] (+) Diversified Prompt 50.46+2.18 49.624+3.43 34.36+1.82 28.02+1.16 24.82+0.20 20.56+0.35 9.10+0.20 7.5140.15

(+) Gen. Ensemble 54.28+3.84 55.31+1.05 37.42+1.80 33.90+0.93 28.36+0.13 23.74+0.37 11.43+0.10 9.59+0.19

Manually Annotated  68.15+5.06 70.98+1.98 28.78+2.26 21.14+1.04 49.204+0.10 40.544+0.46 12.96+0.03 10.33+0.25
Web-scraped 48.39+3.17 36.50+4.24 26.89+1.86 18.88+1.00 32.09+0.36 22.37+0.42 9.924+0.20 6.424+0.04
Base Prompt 41.47+2.26 39.41+2.90 27.74+1.41 18.82+1.57 26.64+0.39 22.04+0.37 7.91+0.24 5.8540.05
DER++ [18] (+) Diversified Prompt 47.34+2.64 41.60+4.08 32.33£1.71 25.36+1.31 25.61+0.36 20.06+0.38 9.40+0.13 7.20+0.17

(+) Gen. Ensemble 49.02+2.41 45.10+1.69 33.07+1.62 28.78+1.49 29.67+0.06 23.37+0.38 11.89+0.02 9.41+0.16

Manually Annotated  63.90+5.04 61.19+2.92 27.49+1.77 19.75+1.58 49.35+0.33 39.40+0.20 12.62+0.13 9.27+0.18
Web-scraped 49.12+3.32 42.49+4.06 27.50+1.92 19.04+1.48 33.80+0.38 23.09+0.84 9.80+0.51 6.43+0.69
Base Prompt 40.35+£1.25 38.04+2.79 26.64+1.28 18.06+0.80 25.42+0.24 22.93+0.19 7.71+0.64 5.13+0.76
ASER [109] (+) Diversified Prompt 48.28+0.67 45.40+2.95 33.76+1.20 25.484+1.94 25.944+0.26 20.93+0.31 9.87+0.02 5.64+0.44

(+) Gen. Ensemble 48.38+1.95 47.24+2.07 35.07+1.46 31.58+2.09 32.01+0.85 24.28+0.70 11.56+0.62 8.25+0.98

Manually Annotated  68.00+4.95 70.33+2.58 26.81+1.72 19.21+1.16 48.92+0.43 40.93+0.12 10.51+1.27 6.43+0.12
Web-scraped 49.274+2.52 39.88+4.93 28.00+1.53 19.194+1.36 30.17+0.25 21.40+0.24 9.294+0.27 6.28+0.03
Base Prompt 43.67+£0.90 39.76+4.72 27.22+1.09 17.00+0.67 23.54+0.32 19.45+0.22 6.82+0.16 4.98+0.05
MEMO [143] (+) Diversified Prompt 48.804+1.69 46.594+2.50 32.21+1.55 24.56+0.47 23.59+0.22 19.30+£0.30 8.63+0.11 6.83+0.11

(+) Gen. Ensemble 50.20+2.37 48.72+0.91 33.50+1.36 29.43+2.79 26.88+0.35 21.67+0.20 10.61+0.13 8.58+0.19
Manually Annotated  67.37+4.67 66.94+2.26 27.73+1.59 20.63+0.71 47.04+0.43 38.25+0.45 11.77+0.20 8.99+0.26
Web-scraped 50.44+2.93 41.96+2.11 27.57+1.78 20.73+1.06 31.68+0.21 23.00+0.95 10.93+0.44 8.54+0.10
Base Prompt 44.78+2.77 46.59+2.62 29.86+1.63 22.86+0.99 27.41+0.23 24.11+0.85 7.91+0.65 6.65+0.12
X-DER [16] (+) Diversified Prompt 49.68+2.97 46.94+3.53 33.61+2.07 24.74+2.70 26.72+0.75 21.71+0.43 9.284+0.86 7.65+0.39
(+) Gen. Ensemble 50.52+1.57 48.19+2.47 33.69+1.36 26.73+0.54 32.14+0.52 25.48+0.16 12.39+0.74 10.04+0.54
Manually Annotated  66.19+4.78 68.49+1.85 28.61+1.92 20.54+0.81 50.35+0.20 42.414+0.14 12.994+0.29 10.68+0.83
Web-scraped 51.07+3.06 44.69+2.22 27.95+1.60 22.16+1.22 30.95+0.34 23.55+0.28 9.93+0.20 7.25+0.08
Base Prompt 45.73+2.65 43.26+4.86 29.24+1.30 22.12+1.07 24.274+0.20 21.294+0.45 7.05+£0.08 5.55+0.06
LiDER [15] (+) Diversified Prompt 51.74+2.48 51.40+2.79 34.04+1.90 27.10+1.41 24.55+0.10 20.784+0.39 9.054+0.16 7.56+0.14

52.46+3.11 52.35+3.26 36.18+1.44 30.94+1.24 30.09+0.41 24.04+0.32 11.42+0.34 9.26+0.29
66.31+5.69 66.59+2.60 29.11+2.19 21.21+1.03 47.75+0.16 40.06+0.35 12.34+0.09 10.06+0.08

(+) Gen. Ensemble

Manually Annotated

ResNet-18



Table 4: Comparison of Manually
Annotated (MA) data and DIS-

COBER on CIFAR-10-W. We use
ResNet-18 as the backbone.

Method Training Data

Asve T Alast T

PACS CCT
Method Training Data D 00D D 00D
Apve T Aast T Aave 1T Aast T Aave T Alast T Aavce T Alast T

Web-scraped 47.1244.67 30.514+5.98 29.784+1.90 15.714+1.94 24.9841.02 11.004+0.90 21.714+0.75 9.93+0.78
ER [99] DISCOBER 55.25+4.11 48.84+3.95 33.24+1.62 23.14+1.21 25.504+0.99 12.03+0.81 25.16+0.56 14.13+0.95

Manually Annotated 72.934+5.29 70.51+1.75 30.68+£1.95 20.854+0.84 52.204+2.52 34.074+3.41 42.2941.55 22.10+2.13

Web-scraped 48.784+5.96 40.954+5.92 28.71+2.24 20.03+3.24 23.074+3.31 12.374+2.78 22.644+2.43 12.20+4+4.23
ER-MIR [3] DISCOBER 50.74+4.09 51.51+1.83 31.84+1.93 25.17+1.05 23.724+0.18 12.594+0.65 24.82+0.34 14.01+4.83

Manually Annotated 68.21+6.44 73.294+1.90 28.69+1.96 23.03+0.85 37.75+1.36 18.99+1.43 33.38+0.70 15.31+1.27

DER++ [18] DISCOBER

Web-scraped 53.61+3.39 45.71+4.20 27.66+1.46 18.75+1.63 23.194+0.51 9.17+1.11 22.174+0.60 8.93+0.66
50.44+4.32 43.96+3.32 30.30+1.81 20.91+0.86 25.24+1.28 10.63+0.85 24.39+0.92 10.17+0.73

Manually Annotated 64.81+6.75 61.36+2.37 28.944+2.03 19.95+1.64 44.05+2.67 19.50+2.78 38.02+1.18 17.104+2.21

ASER [109]

Web-scraped 56.32+5.10 49.55+4.53 30.67+2.58 21.824+2.04 25.48+1.05 12.84+1.40 22.334+0.85 12.23+0.99
DISCOBER 56.06+4.60 52.04+3.85 33.99+2.02 25.81+0.92 26.15+1.74 13.97+1.04 24.85+1.13 12.73+1.36

Manually Annotated 77.83+7.77 76.48+9.23 43.37+4.28 35.87+7.47 54.284+1.71 47.67+1.85 45.07+1.56 28.07+0.72

Vil

ER DISCOBER 60.93+3.92 48.20+0.27
MA 48.97+0.56 31.274+2.31
DISCOBER 58.19+0.86 46.01+0.34

ER-MIR i o 44.774+0.86 35.0142.50

DER.. . DISCOBER  53.88+1.22 39.53:1.42
" MA 45.25+0.07 28.75+1.44

aspg DISCOBER  54.34:0.66 41.88:1.00
MA 50.004+0.59 34.86+1.17

viEmo DISCOBER  53.59:0.67 41.69:£0.67
MA 45.40+0.56 30.97+2.13
x.ppr DISCOBER  57.56:0.75 45.97:0.17

- MA 47.1440.82 33.414+1.34

Lippr DISCOBER  57.13::0.29 45.41:2.58

! MA 46.97+0.42 28.79+4.27
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Fig. 5: Ensemble scaling behavior of (a) ResNet-18 |[47] and (b) ViT |34] for ID Aauc
vs. OOD Aauc on the PACS dataset [144] using ER [99]. (x 1) denotes the ensemble

volume in primary experiments, the default data budget.
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