Neural Redshift:
~ Random-Networks are not
- Random Functions

Damien Teney | |diap Research Institute
Armand Nicolicioiu | ETH Zurich
Valentin Hartmann | EPFL
Ehsan Abbasnejad | University of Adelaide

Why do neural networks generalize so well?

Good performance Better than most other
on test data machine learning models
without overfitting on most tasks.

Why do neural networks generalize so well?

It’'s not SGD.

Full-batch gradient descent without stochasticity works too.

Stochastic training is not necessary for generalization, Geiping et al. 2021

Models from gradient-free methods also generalize. Es rejection sampling in:

Loss landscapes are all you need: NN generalization can be explained without the implicit bias of grad. descent, Chiang et al. 2022

The simplicity bias was observed even before training. cs inlanguage models in:

The no free luncht em, Kolmogorov complexity, and the role of inductive biases in machine learning, Goldblum et al. 2023

“SGD finds simple functions”

neural networks generalize well.

Some tasks work well only with special architectures.

Tabular datasets often work better with decision trees.

Why do neural networks generalize so well?

Inductive biases

Common architectures have properties such that
they're well suited to most real-world data.

What are these properties?
Which architecture choices provide these properties?

We measure properties in untrained networks

EXiSting work looks at models during/after training. (Work on the ‘simplicity bias’, ‘spectral bias’, etc.)
This confounds the effects of architectures/optimization.

We examine untrained (random-weight) MLPs to remove the effects of SGD.

2>
Random weights
o
Evaluation Chosen architecture
rid E.g. 2-layer MLP, TanH,
8 width 256, layer norm.

Model with 2D input and single (scalar) output
(as for regression or binary classification)

Setup similar to

implicit neural representations,
a.k.a. neural fields,

a.k.a. coordinate networks.

Implicit Neural Representations with Periodic
Activation Functions

Vincent

itzmann® Julien N. P. Martel”

Alexander W. Bergman

sitzmannics.stanford.edu jnmartel®st:

David B. Lindell
lindell@stanford.edu gor

Stanford Unives:
veitzmann.github

Abstrag

Implicitly defined, continuous, differentiable
by neural networks have emerged as a poweri
bencfits over conventional representations. H
for such implicit neural representations are

ine detail, and fail to represent a signal's spal
lhc fuct that these are essential to many phys
solution to partial differential equations. We p
functions for implicit neural represcntations |
dubhcd sinusoidal networks of

001:10.1145/3503250

NeRF: Representing Scenes
as Neural Radiance Fields

for View Syn

thesis

By Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng

Abstract T
We present a method that achieves state-ofthe-art results | Fioure s
iz i i by optimiz-
ing an underlying continuous volumetric scenc function | images.
using a sparse set of input views. Our algorithm represents | sample
a scene using a fully connected Y e,

network, whose input is a single cont

hemisphers, and we show two novel views rondered from our

s partclar Eikonal equations (yiclding sig
equation, and the Helmholtz and wave cquat
hypemetworks to learn priors over the spacd

whase ouipas 1 the volume density aad view-dependent
emitted radiance at that spatial location. We synthesize
views by querying 5D coordinates along camera rays and

naturally differents ble, the only input required to
op is a set of images

Iopurimsges Cpomize Nek¥ [—

project website for 4 vid of the i

1 Introduction

We are interested in a class of functions 4 that sutisfy!
P (x, Ve, Vi0,..)

t problem formulation takes as input the §
and, optionally, derivatives of with respect o these.
network that parameterizes (o map X (o some quan
presented in Equation (1). Thus, % s implicitly define
neural networks that parameterize such implicitly defin
As we show in this paper, a surprisingly wide variety
form, such as modeling many different types of diseret
using and

distance functions L14]. and, mare generally, solving
Helmholtz, or wave cquations

“These authors contributed equally o this work.

W
ral diance ficlds to render photorealistic novel views of
scenes with complicated geometry and appearance, and
demonstrate results that outperform prior work on neural
rendering and view synthesis.

1. INTRODUCTION

n this work, we address the longstanding problem of view

setof 3D points, 2) use those points and their corresponding
2D viewing directions as input to the neural network to pro-
put set of colors and d d 3) use classi-

and densities into a 2D image. Because this process is natu
rally differentiable, we can use gradient descent o optimize
this model by minimizing the error between each observed

synthesis in a new way. View of ren
dering newviews of a scene from a given set of input images
and their

outputs from new viewpoints requires correctly hmmlmg
complex_geometry and material reflectance propert
Ma differgnt scche epreacntations and renderig melle
ods have been proposed to attack this problem; however,
sa far none have been able to achicve photorealistic qualit

from our rep-
resentation. Misimisiog this eroc acoss makipe views
encourages the network (o predict a coherent model of the
scene by assigning hlgh volume densities and aceurate col-
ors to the locations that contain the true underlying sce
content. Eigure 2 visualizes this overall pipeline.

We find that the basic implementation of optimizing a
neural radiance field representation for a complex s

overal i prop

docs not converge 0 g

»
sentation that ducea large
1 hi

tation. We address this issuc by tr inginput 5D coor-
a positional encoding that enables the MLP (0

numb input views and i
memory-efficient (see Eigure 1),

We represent a static scene as a continuous 5D function
that utputs the radiance emittcd i cach direction (6, 6)at

represent higher frequency functions.

Our approach can represent complex real-world geom:
etry and appearance and is well suited for gradient-based
using projected images. By storing a scen in the

3. ateach point which
acts like a diffe mmnl opacity controlling how much radi
ce is accumulated by a ray passing through (x, y, 2). Our
with-
il

perceptron or MLP) (o represent this function by regressing
from a single 5D m-\ldnmlc s oo single volume
density and view-dependent RGB color, To render this neu
ral mdmn«fchl IMI(F) imm a pzmmlar viewpoint, we: 1)

generate asampled

parameters of a neural network, our method overcomes the
prohibitive storage costs of discretized voxel grids when mod-
eling complex scenes at high resol 5. We demonstrate
that our resulting neural radiance field method quantitatively

The original version of this paper was published |
in Proceedings of the 2020 European Conference on
Computer Vision.

AMUARY 972 | VOL 63 1 W0 1 | COMMUNICATIONS OF THE AcH 99

Different activation = different function ‘shape’

Examples of functions implemented by random-weight, 2D-input networks:

/

Relu

I

Gelu

_

Swish

/Selu

Tanh

| N

Gaussian

L i

Popular activations:
simplicity bias,
smooth functions.

/

- -
~
—

Why do we care about random-weight networks?

1 Theyreflect a prior distribution over the space of functions.
Earlier work showed that (S)GD acts like Bayesian inference with this prior.

Is SGD a Bayesian sampler? Well, almost. Mingard et al. 2022

Among the many solutions that fit the training data,
those closest to the prior will be favored.

. Intuitively, random networks gives an idea how the trained model
‘fills in the gaps’ between training points

Larger weights/activations = higher complexity

_/

Relu

_/

Gelu

I

Swish

/Selu

4\
[3]
=3
=

N

Gaussian

Increasing
weight
magnitude

RelLU-like activations:
no/weak sensitivity to weight magnitude

Other activations:
strong sensitivity to weight magnitude

.

\

.

A5

How to quantify these properties?

<>
Random weights
o\
Evaluation Chosen architecture
rid E.g. 2-layer MLP, TanH,
g width 256, layer norm.

How to quantify these properties?

Random weights

Frequency
Fourier decomposition

Evaluation |s00¢ Chosen architecture Order Measures of
grid |oeee Eese o MR TN Polynomial decomposition complexity
2000 width 256, layer norm.
Compressibility
LZW compression
Quantifiable « frequency in Fourier decomposition

characterizations * order in decomposition in polynomial basis
of inductive biases | * compressibility

Tanh

Low
frequency

|

High
frequency

33

6

dFL PR
XA 45

+—
Q.
[

A e

apnyubew syybispp —

5

3

2

1

>
-
< 0
l=
- T
o)
| -
Y

Sin

i
4

5

i

|

High
frequency

7
9
1
13

10
13
17
20

15

23

17

26

20

Gaussian

30

Tanh

1
6

11

17
2
28
33

39

44

50

3

1

6

‘H.-v.\
A . 5
"R

7&

L N
A
F 7
. VHI
B XH Hm
A "Wk

apnuubew syybiapp —

The strong simplicity bias is unique to ReLU.i activations

RelLU GELU TanH Gaussian

5

3 Low

= frequency
(@)

Q]

&

§2/

c

D

é’ High

l frequency

Depth —

Impact of other components

Complexity (Fourier)

RelLU GELU Swish SELU TanH Gaussian Sin
1 1 1
MLP
= = = 4 Gating
—————- + Residual
0 ’---;:-:—:-T: 0 | o rhrr o chrrh NV:-‘.:.":::-":".—. + Layer norm:
1 Weight 10 10 1 10 1 50 30
magnitude
Lower complexity No impact Higher complexity
Rel. U-like activations Width Other activations

Layer normalization

Residual connections

Bias magnitudes

Depth

Multiplicative interactions

Different complexity measures are correlated

1 - 1 1 ,
S 5 4
- '} GL) Q .) ‘.‘
> o Q e .
o 20) .
L \ (D] — 3 4
il - “ J
0 0

0 LZ 1

...Despite measuring each a different proxy for complexity:
- frequency (Fourier)
- order of polynomial decomposition (Legendre, Chebyshev)
- compressibility (LZ)

Is this still relevant after training?

o We correlated complexity at init. with generalization performance after training.

~~ Main conclusion: generalization occurs when the architecture’s

preferred complexity matches the target function’s complexity.

I In some cases, a bias towards higher complexity is desirable.
Examples: learning INRs, learning the parity function, avoiding shortcut learning.

Mitigating shortcut learning (Colored-MNIST)

We tweak the preferred complexity with a fixed prefactor before the activations.

TanH Gaussian Sine

=1 1 1
Aj
E
©
2
£
Q
5
S 0

1 1 1
o —— Digit I —— Digit | kY —— Digit |
o : veremnen Col
g Color | 7 Color | B (_.)Iz;:_:; \ | Sweet spot to
%] learn the digit
B (task-specific!)
]
=

05

Prefactor Prefactor Prefactor

Transformers are biased towards compressible sequences

We sample sequences of tokens from an untrained GPT-2.

Similar interventions (to those observed with MLPs) increase the complexity of the sequences.

Depth Weight magnitudes Activation

Relu
- = GelLU
— == Swish

LZ Complexity

(dictionary size
after compression)

e TanH

------- Sine

0 1 2 3 45 6 7

Transformers seem to inherit inductive biases from their building blocks via mechanisms
similar to those in simple MLPs.

Take-aways

Fresh explanations for the performance of neural networks
independent from gradient-based training.

& The ‘simplicity bias’ is not a universal property of all neural architectures.
It can be explained without gradient descent.

It is not always desirable. E.g. causing shortcut learning, preventing learning complex patterns, ...

. These findings suggest possibilities for nudging inductive biases
and controlling the functions implemented by trained models.

E.g. via reparameterization, learning activation functions, ...

	Slide 1: Neural Redshift: Random Networks are not Random Functions
	Slide 2: Why do neural networks generalize so well?
	Slide 3: Why do neural networks generalize so well?
	Slide 4
	Slide 5: Why do neural networks generalize so well?
	Slide 6: We measure properties in untrained networks
	Slide 7
	Slide 8: Different activation ⟹ different function ‘shape’
	Slide 9: Why do we care about random-weight networks?
	Slide 10: Larger weights/activations ⟹ higher complexity
	Slide 11: How to quantify these properties?
	Slide 12: How to quantify these properties?
	Slide 13
	Slide 14
	Slide 15: The strong simplicity bias is unique to ReLU-like activations
	Slide 16: Impact of other components
	Slide 17: Different complexity measures are correlated
	Slide 18: Is this still relevant after training?
	Slide 19: Mitigating shortcut learning (Colored-MNIST)
	Slide 20: Transformers are biased towards compressible sequences
	Slide 21: Take-aways

