
Neural Redshift:
Random Networks are not
Random Functions

Damien Teney
Armand Nicolicioiu
Valentin Hartmann
Ehsan Abbasnejad

Idiap Research Institute
ETH Zurich
EPFL
University of Adelaide

Good performance
on test data

without overfitting

Why do neural networks generalize so well?

Better than most other
machine learning models

on most tasks.

It’s not SGD.

Full-batch gradient descent without stochasticity works too.
Stochastic training is not necessary for generalization, Geiping et al. 2021

Models from gradient-free methods also generalize. E.g. rejection sampling in:

Loss landscapes are all you need: NN generalization can be explained without the implicit bias of grad. descent, Chiang et al. 2022

The simplicity bias was observed even before training. E.g. in language models in:

The no free lunch theorem, Kolmogorov complexity, and the role of inductive biases in machine learning, Goldblum et al. 2023

Why do neural networks generalize so well?

“SGD finds simple functions”

Not all neural networks generalize well.

Some tasks work well only with special architectures. E.g. sine activations in INRs (NeRFs).

Implicit neural representations with periodic activation functions, Sitzmann et al. 2020

Tabular datasets often work better with decision trees.
Why do tree-based models still outperform deep learning on tabular data, Grinsztajn et al. 2022

Common architectures have properties such that

they’re well suited to most real-world data.

What are these properties?

Which architecture choices provide these properties?

Inductive biases

Why do neural networks generalize so well?

Existing work looks at models during/after training. (Work on the ‘simplicity bias‘, ‘spectral bias‘, etc.)

This confounds the effects of architectures/optimization.

We examine untrained (random-weight) MLPs to remove the effects of SGD.

We measure properties in untrained networks

Model with 2D input and single (scalar) output

(as for regression or binary classification)

Setup similar to

implicit neural representations,

a.k.a. neural fields,

a.k.a. coordinate networks.

Different activation ⟹ different function ‘shape’

Examples of functions implemented by random-weight, 2D-input networks:

Popular activations:
simplicity bias,

smooth functions.

They reflect a prior distribution over the space of functions.
Earlier work showed that (S)GD acts like Bayesian inference with this prior.
Is SGD a Bayesian sampler? Well, almost. Mingard et al. 2022

Among the many solutions that fit the training data,
those closest to the prior will be favored.

Intuitively, random networks gives an idea how the trained model
‘fills in the gaps’ between training points

Why do we care about random-weight networks?

Larger weights/activations ⟹ higher complexity

Increasing
weight

magnitude

ReLU-like activations:
no/weak sensitivity to weight magnitude

Other activations:
strong sensitivity to weight magnitude

How to quantify these properties?

How to quantify these properties?

Quantifiable • frequency in Fourier decomposition

characterizations • order in decomposition in polynomial basis (Chebyshev, Legendre)

of inductive biases • compressibility (dictionary size with Lempel–Ziv compression)

Low
frequency

High
frequency

Low
frequency

High
frequency

The strong simplicity bias is unique to ReLU-like activations

Low
frequency

High
frequency

Impact of other components

Lower complexity No impact Higher complexity

ReLU-like activations
Layer normalization

Residual connections

Width
Bias magnitudes

Other activations
Depth

Multiplicative interactions

Weight
magnitude

…Despite measuring each a different proxy for complexity:
• frequency (Fourier)
• order of polynomial decomposition (Legendre, Chebyshev)
• compressibility (LZ)

Different complexity measures are correlated

We correlated complexity at init. with generalization performance after training.

Main conclusion: generalization occurs when the architecture’s

preferred complexity matches the target function’s complexity.

In some cases, a bias towards higher complexity is desirable.

Examples: learning INRs, learning the parity function, avoiding shortcut learning.

Is this still relevant after training?

We tweak the preferred complexity with a fixed prefactor before the activations.

Mitigating shortcut learning (Colored-MNIST)

Sweet spot to
learn the digit
(task-specific!)

Transformers are biased towards compressible sequences

We sample sequences of tokens from an untrained GPT-2.

Similar interventions (to those observed with MLPs) increase the complexity of the sequences.

Transformers seem to inherit inductive biases from their building blocks via mechanisms
similar to those in simple MLPs.

Weight magnitudes ActivationDepth

LZ Complexity
(dictionary size

after compression)

Fresh explanations for the performance of neural networks

independent from gradient-based training.

The ‘simplicity bias’ is not a universal property of all neural architectures.

It can be explained without gradient descent.

It is not always desirable. E.g. causing shortcut learning, preventing learning complex patterns, …

These findings suggest possibilities for nudging inductive biases

and controlling the functions implemented by trained models.

E.g. via reparameterization, learning activation functions, …

Take-aways

	Slide 1: Neural Redshift: Random Networks are not Random Functions
	Slide 2: Why do neural networks generalize so well?
	Slide 3: Why do neural networks generalize so well?
	Slide 4
	Slide 5: Why do neural networks generalize so well?
	Slide 6: We measure properties in untrained networks
	Slide 7
	Slide 8: Different activation ⟹ different function ‘shape’
	Slide 9: Why do we care about random-weight networks?
	Slide 10: Larger weights/activations ⟹ higher complexity
	Slide 11: How to quantify these properties?
	Slide 12: How to quantify these properties?
	Slide 13
	Slide 14
	Slide 15: The strong simplicity bias is unique to ReLU-like activations
	Slide 16: Impact of other components
	Slide 17: Different complexity measures are correlated
	Slide 18: Is this still relevant after training?
	Slide 19: Mitigating shortcut learning (Colored-MNIST)
	Slide 20: Transformers are biased towards compressible sequences
	Slide 21: Take-aways

