

Theoretically Upper-Bounding the Expected Adversarial Robustness of GNNs.

Yassine Abbahaddou ¹, Sofiane Ennadir ²

École Polytechnique, Institut Polytechnique de Paris, France.
 ² KTH Royal Institute of Technology, Sweden.

May 17, 2024

Today we present work that was done under the supervision of

Prof. Johannes Lutzeyer Assistant Professor LIX

Prof. Henrik Boström Professor KTH

Prof. Michalis Vazirgiannis Distinguished Professor LIX

Overall Goal: Learn "informative" representations of graph structured data

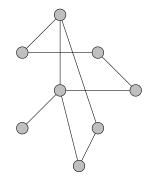
Overall Goal: Learn "informative" representations of graph structured data

What is graph structured data?

Overall Goal: Learn "informative" representations of graph structured data

What is graph structured data? It's the combination of

• a graph G = (V, E);



Overall Goal: Learn "informative" representations of graph structured data

What is graph structured data? It's the combination of

- a graph G = (V, E);
- node-features $X = [x_1, \ldots, x_n]^T$.



Overall Goal: Learn "informative" representations of graph structured data

What is graph structured data?

It's the combination of

- a graph G = (V, E);
- node-features $X = [x_1, \ldots, x_n]^T$.

US political weblogs (Adamic & Glance, 2005)

Where does it arise?

Overall Goal: Learn "informative" representations of graph structured data

What is graph structured data?

It's the combination of

- a graph G = (V, E);
- node-features $X = [x_1, \ldots, x_n]^T$.

Where does it arise?

US political weblogs (Adamic & Glance, 2005)

Caffeine molecule (Bronstein, 2021)

Overall Goal: Learn "informative" representations of graph structured data

What is graph structured data? It's the combination of

t s the combination of

- a graph G = (V, E);
- node-features $X = [x_1, \ldots, x_n]^T$.

Where does it arise?

US political weblogs (Adamic & Glance, 2005)

Deezer artists (Salha-Galvan, 2022)

Overall Goal: Learn "informative" representations of graph structured data

What is graph structured data?

It's the combination of

- a graph G = (V, E);
- node-features $X = [x_1, \ldots, x_n]^T$.

Where does it arise? It's ubiquitous!

US political weblogs (Adamic & Glance, 2005)

Deezer artists (Salha-Galvan, 2022)

Overall Goal: Learn "informative" representations of graph structured data

What is graph structured data? It's the combination of

• a graph G = (V, E);

• node-features $X = [x_1, \ldots, x_n]^T$.

Where does it arise? It's ubiquitous!

What can we learn from it?

US political weblogs (Adamic & Glance, 2005)

Deezer artists (Salha-Galvan, 2022)

Overall Goal: Learn "informative" representations of graph structured data

What is graph structured data? It's the combination of

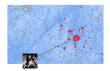
- a graph G = (V, E);
- node-features $X = [x_1, \ldots, x_n]^T$.

Where does it arise? It's ubiquitous!

What can we learn from it?

• Node and Graph Classification

US political weblogs (Adamic & Glance, 2005)



Deezer artists (Salha-Galvan, 2022)

Overall Goal: Learn "informative" representations of graph structured data

What is graph structured data? It's the combination of

It's the combination of

- a graph G = (V, E);
- node-features $X = [x_1, \ldots, x_n]^T$.

Where does it arise?

It's ubiquitous!

What can we learn from it?

- Node and Graph Classification
- Node and Graph Regression

US political weblogs (Adamic & Glance, 2005)

Caffeine molecule (Bronstein, 2021)

Deezer artists (Salha-Galvan, 2022)

Overall Goal: Learn "informative" representations of graph structured data

What is graph structured data? It's the combination of

It's the combination of

- a graph G = (V, E);
- node-features $X = [x_1, \ldots, x_n]^T$.

Where does it arise?

It's ubiquitous!

What can we learn from it?

- Node and Graph Classification
- Node and Graph Regression
- Link Prediction

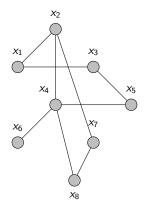
US political weblogs (Adamic & Glance, 2005)

Deezer artists (Salha-Galvan, 2022)

Graph Neural Networks (GNNs) are neural networks that take graph-structured data as input.

Graph Neural Networks (GNNs) are neural networks that take graph-structured data as input.

In this talk we will only see a specific type of GNN, the Message Passing Neural Networks.



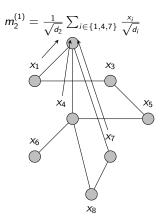
Graph Neural Networks (GNNs) are neural networks that take graph-structured data as input.

In this talk we will only see a specific type of GNN, the Message Passing Neural Networks.

$$m_{\boldsymbol{v}}^{(k)} = M^{(k)}\left(\left\{h_{\boldsymbol{w}}^{(k-1)}: \boldsymbol{w} \in \mathcal{N}(\boldsymbol{v})\right\}\right),$$

E.g., the Graph Convolutional Network (GCN, Kipf and Welling, 2017)

ÃΧ.



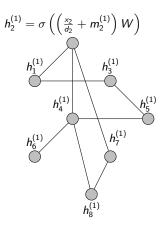
Graph Neural Networks (GNNs) are neural networks that take graph-structured data as input.

In this talk we will only see a specific type of GNN, the Message Passing Neural Networks.

$$\begin{split} m_{v}^{(k)} &= M^{(k)}\left(\left\{h_{w}^{(k-1)}: w \in \mathcal{N}(v)\right\}\right), \\ h_{v}^{(k)} &= U^{(k)}\left(h_{v}^{(k-1)}, m_{v}^{(k)}\right). \end{split}$$

E.g., the Graph Convolutional Network (GCN, Kipf and Welling, 2017)

$$H^{(1)} = \operatorname{ReLU}\left(\tilde{A}XW^{(1)}\right).$$



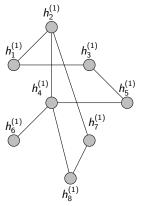
Graph Neural Networks (GNNs) are neural networks that take graph-structured data as input.

In this talk we will only see a specific type of GNN, the Message Passing Neural Networks.

$$\begin{split} m_{v}^{(k)} &= M^{(k)} \left(\left\{ h_{w}^{(k-1)} : w \in \mathcal{N}(v) \right\} \right), \\ h_{v}^{(k)} &= U^{(k)} \left(h_{v}^{(k-1)}, m_{v}^{(k)} \right). \end{split}$$

E.g., the Graph Convolutional Network (GCN, Kipf and Welling, 2017)

$$H^{(1)} = \operatorname{ReLU}\left(\widetilde{A}XW^{(1)}
ight).$$



Iteratively performing the message-passing and update computations allows us to build 'deep' learning models, e.g., a 3-layer GCN

$$\hat{y} = \sigma \left(\tilde{A} \operatorname{ReLU} \left(\tilde{A} \operatorname{ReLU} \left(\tilde{A} X W^{(1)} \right) W^{(2)} \right) W^{(3)} \right).$$

Empirical and Theoretical Research:

 expressivity analysis of GNNs (Xu et al., 2019; Geerts and Reutter, 2022);

Empirical and Theoretical Research:

- expressivity analysis of GNNs (Xu et al., 2019; Geerts and Reutter, 2022);
- bottlenecks, e.g., oversmoothing and oversquashing (Alon and Yahav, 2020; Deac et al., 2022)

Empirical and Theoretical Research:

- expressivity analysis of GNNs (Xu et al., 2019; Geerts and Reutter, 2022);
- bottlenecks, e.g., oversmoothing and oversquashing (Alon and Yahav, 2020; Deac et al., 2022)
- robustness to adversarial attacks and noise (Günnemann, 2022; Zhou et al., 2020).

Empirical and Theoretical Research:

- expressivity analysis of GNNs (Xu et al., 2019; Geerts and Reutter, 2022);
- bottlenecks, e.g., oversmoothing and oversquashing (Alon and Yahav, 2020; Deac et al., 2022)
- robustness to adversarial attacks and noise (Günnemann, 2022; Zhou et al., 2020).

Successful Applications of GNNs:

• Twitter (Bronstein, 2020);

Empirical and Theoretical Research:

- expressivity analysis of GNNs (Xu et al., 2019; Geerts and Reutter, 2022);
- bottlenecks, e.g., oversmoothing and oversquashing (Alon and Yahav, 2020; Deac et al., 2022)
- robustness to adversarial attacks and noise (Günnemann, 2022; Zhou et al., 2020).

Successful Applications of GNNs:

- Twitter (Bronstein, 2020);
- Amazon, Alibaba, Pinterest & Uber Eats (Virinchi et al., 2022; Wang et al., 2018; Ying et al., 2018; Jain et al., 2019);

Empirical and Theoretical Research:

- expressivity analysis of GNNs (Xu et al., 2019; Geerts and Reutter, 2022);
- bottlenecks, e.g., oversmoothing and oversquashing (Alon and Yahav, 2020; Deac et al., 2022)
- robustness to adversarial attacks and noise (Günnemann, 2022; Zhou et al., 2020).

Successful Applications of GNNs:

- Twitter (Bronstein, 2020);
- Amazon, Alibaba, Pinterest & Uber Eats (Virinchi et al., 2022; Wang et al., 2018; Ying et al., 2018; Jain et al., 2019);
- Discovery of two *new antibiotics* (Stokes et al., 2020; Liu et al., 2023);

Empirical and Theoretical Research:

- expressivity analysis of GNNs (Xu et al., 2019; Geerts and Reutter, 2022);
- bottlenecks, e.g., oversmoothing and oversquashing (Alon and Yahav, 2020; Deac et al., 2022)
- robustness to adversarial attacks and noise (Günnemann, 2022; Zhou et al., 2020).

Successful Applications of GNNs:

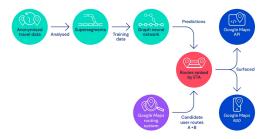
- Twitter (Bronstein, 2020);
- Amazon, Alibaba, Pinterest & Uber Eats (Virinchi et al., 2022; Wang et al., 2018; Ying et al., 2018; Jain et al., 2019);
- Discovery of two *new antibiotics* (Stokes et al., 2020; Liu et al., 2023);
- LinkedIn (Borisyuk et al., 2024).

On the Robustness of GNNs

Traffic prediction with advanced Graph Neural Networks - DeepMind

[1] ETA Prediction with Graph Neural Networks in Google Maps. Derrow-Pinion & Al - CIKM 2021.

On the Robustness of GNNs



Traffic prediction with advanced Graph Neural Networks - DeepMind Home > Tech > News > This user 'hacked' Google Maps traffic flow in an entire area with 99 smartphones

This user 'hacked' Google Maps traffic flow in an entire area with 99 smartphones

As shown in a video by Simon Weckert on YouTube, the hack doesn't need you to root a smartphone or perform any of the tricks that need a developer expertise.

By: HT CORRESPONDENT | Updated on: Aug 20 2022, 19:09 IST

🛛 🚺 💙 🔕

[1] ETA Prediction with Graph Neural Networks in Google Maps. Derrow-Pinion & AI - CIKM 2021.

On the Robustness of GNNs

Traffic prediction with advanced Graph Neural Networks - DeepMind Home > Tech > News > This user 'hacked' Google Maps traffic flow in an entire area with 99 smartphones

This user 'hacked' Google Maps traffic flow in an entire area with 99 smartphones

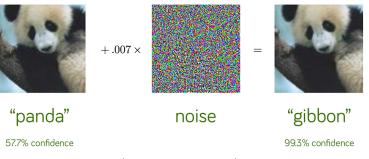
As shown in a video by Simon Weckert on YouTube, the hack doesn't need you to root a smartphone or perform any of the tricks that need a developer expertise.

By: HT CORRESPONDENT | Updated on: Aug 20 2022, 19:09 IST

🛛 🚺 💙 🔕

\rightarrow How Robust are GNNs?

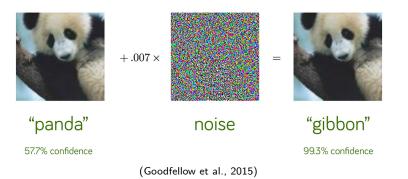
[1] ETA Prediction with Graph Neural Networks in Google Maps. Derrow-Pinion & Al - CIKM 2021.



(Goodfellow et al., 2015)

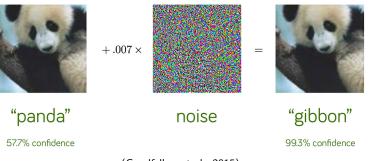


To quantify the robustness of a graph-based function $f : (\mathcal{A}, \mathcal{X}) \to \mathcal{Y}$ we need:



To quantify the robustness of a graph-based function $f : (\mathcal{A}, \mathcal{X}) \to \mathcal{Y}$ we need:

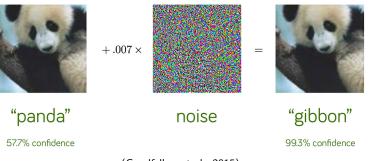
• a distance on the input space $d_2^{\alpha,\beta}([G,X],[\tilde{G},\tilde{X}]) = \min_{P \in \Pi} \left(\alpha \|A - P\tilde{A}P^T\|_2 + \beta \|X - P\tilde{X}\|_2 \right)$,



(Goodfellow et al., 2015)

To quantify the robustness of a graph-based function $f : (A, X) \to Y$ we need:

- a distance on the input space $d_2^{\alpha,\beta}([G,X],[\tilde{G},\tilde{X}]) = \min_{P \in \Pi} \left(\alpha \|A P\tilde{A}P^T\|_2 + \beta \|X P\tilde{X}\|_2 \right)$,
- and a distance on the output space $d_1(f(\tilde{G}, \tilde{X}), f(G, X)) = \|f(\tilde{G}, \tilde{X}) f(G, X)\|_1$.



(Goodfellow et al., 2015)

To quantify the robustness of a graph-based function $f : (\mathcal{A}, \mathcal{X}) \to \mathcal{Y}$ we need:

- a distance on the input space $d_2^{\alpha,\beta}([G,X],[\tilde{G},\tilde{X}]) = \min_{P \in \Pi} \left(\alpha \|A P\tilde{A}P^T\|_2 + \beta \|X P\tilde{X}\|_2 \right)$,
- and a distance on the output space $d_1(f(\tilde{G}, \tilde{X}), f(G, X)) = \|f(\tilde{G}, \tilde{X}) f(G, X)\|_1$.

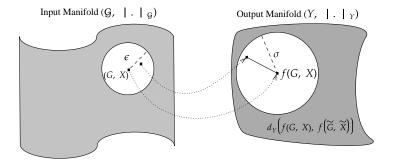
The set of adversarial graphs can be written as:

$$\hat{\mathcal{G}} = \{[\tilde{\mathcal{G}}, \tilde{X}] \mid d^{lpha, eta}([\mathcal{G}, X], [\tilde{\mathcal{G}}, \tilde{X}]) \leq \epsilon : f([\tilde{\mathcal{G}}, \tilde{X}]) \neq f([\mathcal{G}, X])\}$$

We introduce the concept of "Adversarial Risk" for a graph-based classifier f as follows:

$$\mathsf{Adv}_{\epsilon}^{\alpha,\beta}[\mathsf{f}] = \mathbb{P}_{(\mathsf{G},\mathsf{X})\sim\mathcal{D}_{\mathcal{G},\mathcal{X}}}[(\tilde{\mathsf{G}},\tilde{\mathsf{X}})\in\mathsf{B}^{\alpha,\beta}(\mathsf{G},\mathsf{X},\epsilon):\mathsf{d}_{\mathcal{Y}}(\mathsf{f}(\tilde{\mathsf{G}},\tilde{\mathsf{X}}),\mathsf{f}(\mathsf{G},\mathsf{X})) > \sigma], \tag{1}$$

with: $B^{\alpha,\beta}(G,X,\epsilon) = \{(\tilde{G},\tilde{X}): d^{\alpha,\beta}([G,X],[\tilde{G},\tilde{X}]) < \epsilon\}$ being the input's graph neighborhood.



Definition (Graph Adversarial Robustness).

The graph-based function $f : (\mathcal{A}, \mathcal{X}) \to \mathcal{Y}$ is said to be (ϵ, γ) – robust if its **adversarial risk** is upper-bounded, i. e., $Adv_{\epsilon}^{\alpha,\beta}[f] \leq \gamma$ with respect to the chosen graph distances.

Problem Set-Up & Theoretical Results

Recall, Graph Neural Networks (GNNs) take both a graph A and node features X as input.

Problem Set-Up & Theoretical Results

Recall, Graph Neural Networks (GNNs) take both a graph A and node features X as input.

Problem: Most defense approaches for GNNs defend structural attacks altering A. There exists very little work on how to defend against attacks on the node features X.

Problem Set-Up & Theoretical Results

Recall, Graph Neural Networks (GNNs) take both a graph A and node features X as input.

Problem: Most defense approaches for GNNs defend structural attacks altering A. There exists very little work on how to defend against attacks on the node features X.

Main Theorem (Upper Bound on GCN Vulnerability).

We consider node-feature attacks on the input graph (A, X), with a budget ϵ and *L*-layer GCNs with weight matrices $W^{(i)}$ for $i \in \{1, \ldots, L\}$.

Then, the adversarial risk of GCNs is upper bounded by

$$\gamma = \prod_{i=1}^{L} \| W^{(i)} \|_1 \frac{\epsilon \sum_{u \in \mathcal{V}} \hat{w}_u}{\sigma},$$

with $\hat{w_u}$ denoting the sum of normalized walks of length (L-1) starting from node u.

Problem Set-Up & Theoretical Results

Recall, Graph Neural Networks (GNNs) take both a graph A and node features X as input.

Problem: Most defense approaches for GNNs defend structural attacks altering A. There exists very little work on how to defend against attacks on the node features X.

Main Theorem (Upper Bound on GCN Vulnerability).

We consider node-feature attacks on the input graph (A, X), with a budget ϵ and *L*-layer GCNs with weight matrices $W^{(i)}$ for $i \in \{1, \ldots, L\}$.

Then, the adversarial risk of GCNs is upper bounded by

$$\gamma = \prod_{i=1}^{L} \| W^{(i)} \|_1 \frac{\epsilon \sum_{u \in \mathcal{V}} \hat{w}_u}{\sigma},$$

with $\hat{w_u}$ denoting the sum of normalized walks of length (L-1) starting from node u.

Insight: Our computed upper bound on the adversarial risk of a GCN is dependent on the weight norm. Specifically, smaller $\prod_{i=1}^{L} \|W^{(i)}\|_1$ yields a more robust GCN.

Recall, Graph Neural Networks (GNNs) take both a graph A and node features X as input.

Theorem 2 (Structural Attacks).

We consider structural attacks on the input graph (A, X), with a budget ϵ and *L*-layer GCNs with weight matrices $W^{(i)}$ for $i \in \{1, \ldots, L\}$. Then, the **adversarial risk** of GCNs is upper bounded by

$$\gamma = \prod_{i=1}^{L} \| W^{(i)} \|_2 \| X \|_2 \epsilon (1 + L \prod_{i=1}^{L} \| W^{(i)} \|_2) / \sigma.$$

Insight: The computed upper bound in the case of structural case shows similar findings as the case of node-features based attacks. Specifically, the bound is **depedent on the weight norm**.

Methodology

- Fact: Orthonormal matrices have norm 1.
 - \Rightarrow According to our bound; a GNN with orthonormal weight matrices should be more robust.

Methodology

Fact: Orthonormal matrices have norm 1.

 \Rightarrow According to our bound; a GNN with orthonormal weight matrices should be more robust.

Björk Orthonormalisation Algorithm (A. Björck and C. Bowie., 1971)

Given a weight matrix W we iteratively alter it to approximate the closest orthonormal matrix \hat{W} . When $\hat{W}_0 = W$, we recursively compute

$$\hat{W}_{k+1} = \hat{W}_k \left(I + \frac{1}{2} \left(I - \hat{W}_k^T \hat{W}_k \right) + \ldots + (-1)^p \binom{-1/2}{p} \left(I - \hat{W}_k^T \hat{W}_k \right)^p \right).$$

Methodology

Fact: Orthonormal matrices have norm 1.

 \Rightarrow According to our bound; a GNN with orthonormal weight matrices should be more robust.

Björk Orthonormalisation Algorithm (A. Björck and C. Bowie., 1971)

Given a weight matrix W we iteratively alter it to approximate the closest orthonormal matrix \hat{W} . When $\hat{W}_0 = W$, we recursively compute

$$\hat{W}_{k+1} = \hat{W}_k \left(I + \frac{1}{2} \left(I - \hat{W}_k^T \hat{W}_k \right) + \ldots + (-1)^p \binom{-1/2}{p} \left(I - \hat{W}_k^T \hat{W}_k \right)^p \right)$$

Proposed Solution: In our *GCORN* model we propose the inclusion of several Björk Orthonormalisation iterations in each forward pass during the training of a GCN, yielding weight matrices that approach orthonormality and thereby a more robust GNN.

Estimation of Our Robustness Measure

• Goal: Empirically estimate $\mathbf{Adv}_{\epsilon}^{\alpha,\beta}[\mathbf{f}]$

$$\mathsf{Adv}_{\epsilon}^{\alpha,\beta}[f] = \mathbb{E}_{\substack{(G,X)\sim\mathcal{D}_{\mathcal{G},\mathcal{X}},\\ (\tilde{G},\tilde{X})\in \mathcal{B}^{\alpha,\beta}((G,X),\epsilon)}} \left[\mathbf{1}\{d_{\mathcal{Y}}(f(\tilde{G},\tilde{X}),f(G,X)) > \sigma\}\right].$$

Estimation of Our Robustness Measure

• Goal: Empirically estimate $Adv_{\epsilon}^{\alpha,\beta}[f]$

$$Adv_{\epsilon}^{\alpha,\beta}[f] = \mathbb{E}_{\substack{(G,X)\sim \mathcal{D}_{\mathcal{G},\mathcal{X}},\\ (\tilde{G},\tilde{X})\in B^{\alpha,\beta}((G,X),\epsilon)}} \left[\mathbf{1}\{d_{\mathcal{Y}}(f(\tilde{G},\tilde{X}),f(G,X)) > \sigma\}\right].$$

- Insight: Use Stratified Sampling
 - Sampling \tilde{X} is equivalent to first sample $Z \in \mathbb{R}^{n \times K}$ from $\mathcal{B}_{\epsilon} = \{Z \in \mathbb{R}^{n \times K} : \|Z\|_{\mathcal{X}} \leq \epsilon\}$ and then set $\tilde{X} = X + Z$
 - Decomposition of \mathcal{B}_{ϵ}

$$S_r = \{ Z \in \mathbb{R}^{n \times \kappa} : \| Z \|_{\mathcal{X}} = r \}, \qquad \mathcal{B}_{\epsilon} = \bigcup_{r \leq \epsilon} S_r; \qquad \forall r \neq r' \quad S_r \cap S_{r'} = \emptyset.$$

Lemma

Let \mathbb{R}^{K} be the real finite-dimensional space and ϵ a positive real number. If $R^{(p)}$ is the random variable indicating the maximum of the L_{p} norm's values inside the ball of radius ϵ , i.e., $\mathcal{B}_{\epsilon} = \left\{ Z \in \mathbb{R}^{n \times K} : \max_{i \in \{1,...,n\}} \|Z_{i}\|_{p} \le \epsilon \right\}$. Then, for every p > 0, the density distribution of $R^{(p)}$ does not depends on p and is defined as follows, $p_{\epsilon}(r) = K \frac{1}{\epsilon} \left(\frac{r}{\epsilon}\right)^{K-1} \mathbf{1} \{ 0 \le r \le \epsilon \}$.

Estimation of Our Robustness Measure

Goal: empirically estimate Adv^{α,β}_ϵ[f]

$$Adv_{\epsilon}^{\alpha,\beta}[f] = \mathbb{E}_{\substack{(G,X)\sim\mathcal{D}_{G,\mathcal{X}},\\ (\tilde{G},\tilde{X})\in B^{\alpha,\beta}((G,X),\epsilon)}} \left[\mathbf{1}\{d_{\mathcal{Y}}(f(\tilde{G},\tilde{X}),f(G,X)) > \sigma\}\right].$$

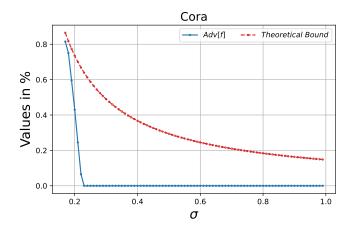
Algorithm Estimation of $Adv_{\epsilon}^{\alpha,\beta}[f]$.

 $\begin{array}{l} \text{Inputs: Sphere Radius : } \epsilon > 0, \text{ Number of Samples } L_{max}, \text{ Number of Input Graphs } |\mathcal{D}|;\\ \text{Initialize } Adv = 0;\\ \text{foreach } [G_i, X_i] \in \mathcal{D} \text{ do}\\ & \quad \text{Initialize } Adv_i = 0;\\ \text{foreach } I = 1, \dots, L_{max} \text{ do}\\ & \quad 1. \text{ Sample a distance } r \in [0, \epsilon] \text{ from the prior distribution } p_{\epsilon};\\ 2. \text{ Uniformly sample } Z_i \in \mathbb{R}^{n \times K} \text{ from } S_r;\\ 3. \text{ Choose } X_i = X_i + Z_i;\\ 4. \text{ Update}\\ & \quad Adv_i \leftarrow Adv_i + \mathbf{1}\{d_{\mathcal{Y}}(f(\tilde{G}_i, \tilde{X}_i), f(G, X)) > \sigma\}\\ & \quad \text{end foreach}\\ & \quad Adv_i = Adv_i/L_{max}; \text{ } Adv = Adv + Adv_i;\\ & \quad \text{end foreach}\\ & \quad \text{Return } Adv/ \mid \mathcal{D} \mid \end{array}$

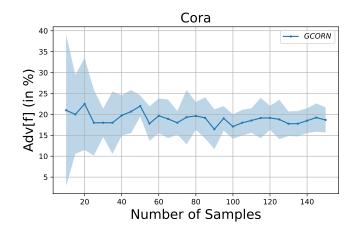
Tightness of the Computer Theoretical Upper-Bound

Robustness Inequality:

$$\mathsf{Adv}_{\epsilon}^{lpha,eta}[f] \leq \gamma = \prod_{i=1}^{L} \lVert \mathcal{W}^{(i)}
Vert_{\infty} \epsilon \hat{w}_{\mathcal{G}} / \sigma$$



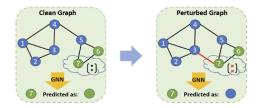
The Effect of Sampling on the Empirical Estimation Of $Adv_{\epsilon}^{lpha,eta}[f]$



Required Number of Samples based on the :

$$\frac{\log(\alpha)}{\log\left(1-\left(\frac{r}{\epsilon}\right)^{K}\right)}$$

Graph Adversarial Attacks



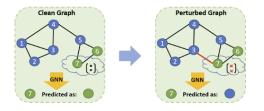
Different attack possibilities within the Graph:

- Edit Edges.
- Edit Nodes/Edges Features.
- Add/Delete Nodes.

And different settings:

- White Box (Full Knowledge).
- Black Box (No Knowledge assumed).

Graph Adversarial Attacks



Different attack possibilities within the Graph:

- Edit Edges.
- Edit Nodes/Edges Features.
- Add/Delete Nodes.

And different settings:

- White Box (Full Knowledge).
- Black Box (No Knowledge assumed).

Feature-based Attacks:

- Random Attack Injecting noise from a scaled centered Gaussian $\mathcal{N}(0,1)$.
- Gradient-based Mainly using "PGD" and "Nettack".

Structure-based Attacks:

- Gradient-based "Mettack" and "PGD".
- Probabilistic gradient method based on "DICE".

Results

Attack	Dataset	GCN	GCN-k	AirGNN	RGCN	ParsevalR	GCORN
	Cora	68.4 ± 1.9	69.2 ± 2.6	73.5 ± 1.9	71.6 ± 0.3	72.9 ± 0.9	77.1 \pm 1.8
Random	CiteSeer	57.8 ± 1.5	62.3 ± 1.2	64.6 ± 1.6	63.7 ± 0.6	65.1 ± 0.8	67.8 \pm 1.4
$(\psi = 0.5)$	PubMed	68.3 ± 1.2	71.2 ± 1.1	70.9 ± 1.3	71.4 ± 0.5	71.8 ± 0.8	73.1 \pm 1.1
$(\psi = 0.5)$	CS	85.3 ± 1.1	86.7 ± 1.1	87.5 ± 1.6	88.2 ± 0.9	87.6 ± 0.6	89.8 ± 1.2
	OGBN-Arxiv	68.2 ± 1.5	52.8 ± 0.5	66.5 ± 1.3	63.8 ± 1.9	68.3 ± 1.9	69.1 ± 1.8
	Cora	41.7 ± 2.1	46.3 ± 2.8	53.7 ± 2.2	52.8 ± 1.6	55.3 ± 1.2	57.6 ± 1.9
Random	CiteSeer	38.2 ± 1.3	45.3 ± 1.4	49.8 ± 2.1	43.7 ± 2.2	51.2 ± 1.2	57.3 \pm 1.7
	PubMed	60.1 ± 1.7	62.3 ± 1.3	62.4 ± 1.2	61.9 ± 1.2	61.3 ± 1.7	65.8 ± 1.4
$(\psi = 1.0)$	CS	69.9 ± 1.3	73.2 ± 0.9	76.7 ± 2.8	76.2 ± 1.4	78.7 ± 1.2	81.3 ± 1.6
	OGBN-Arxiv	66.4 ± 1.9	46.6 ± 0.6	62.7 ± 1.6	63.0 ± 2.4	66.1 ± 0.7	67.3 ± 2.1
	Cora	54.1 ± 2.4	58.3 ± 1.6	68.2 ± 1.8	62.5 ± 1.2	68.6 ± 1.7	71.1 ± 1.4
	CiteSeer	52.3 ± 1.1	59.6 ± 1.6	59.3 ± 2.1	61.9 ± 1.1	62.1 ± 1.5	65.6 ± 1.4
PGD	PubMed	66.1 ± 2.1	67.3 ± 1.3	70.8 ± 1.7	69.5 ± 0.9	68.9 ± 2.1	72.3 \pm 1.3
	CS	71.3 ± 1.1	74.1 ± 0.8	76.3 ± 2.1	76.6 ± 1.2	77.3 ± 0.6	79.6 \pm 1.2
	OGBN-Arxiv	67.5 ± 0.9	49.9 ± 0.7	55.7 ± 0.9	63.6 ± 0.7	67.6 ± 1.2	$\textbf{68.1} \pm \textbf{1.1}$
	Cora	60.9 ± 2.5	64.2 ± 5.2	66.7 ± 3.8	63.4 ± 3.8	67.5 ± 2.5	68.3 ± 1.4
	CiteSeer	55.8 ± 1.4	71.7 ± 1.4	67.5 ± 2.5	70.8 ± 3.8	69.2 ± 3.8	77.5 \pm 2.5
Nettack	PubMed	60.0 ± 2.5	65.8 ± 2.9	69.2 ± 1.4	71.7 \pm 3.8	68.3 ± 1.4	70.8 ± 1.4
	CS	55.8 ± 1.4	71.6 ± 1.4	76.7 ± 1.4	71.7 ± 2.9	75.8 ± 2.8	78.3 \pm 1.4
	OGBN-Arxiv	49.2 ± 2.9	53.3 ± 1.4	56.7 ± 1.4	52.6 ± 2.5	55.8 ± 1.4	55.8 ± 1.4

Table: Node classification accuracy (\pm standard deviation) for feature-based attacks.

 Our GCORN model often outperforms existing defense approaches when subject to feature based attacks.

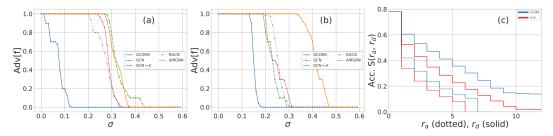
Results - Structural Attacks

Attack	Dataset	GCN	GCN-Jaccard	RGCN	GNN-SVD	GNN-Guard	ParsevalR	GCORN
	Cora	73.0 ± 0.7	75.4 ± 1.8	69.2 ± 0.3	73.6 ± 0.9	74.4 ± 0.8	71.9 ± 0.7	$\textbf{77.3} \pm \textbf{0.5}$
Mettack	CiteSeer	63.2 ± 0.9	69.5 ± 1.9	68.9 ± 0.6	65.8 ± 0.6	68.8 ± 1.5	68.3 ± 0.8	$\textbf{73.7} \pm \textbf{0.3}$
WIELLACK	PubMed	60.7 ± 0.7	62.9 ± 1.8	65.1 ± 0.4	82.1 ± 0.8	$\textbf{84.8} \pm \textbf{0.3}$	69.5 ± 1.1	71.8 ± 0.4
	CoraML	73.1 ± 0.6	75.4 ± 0.4	77.1 ± 1.1	71.3 ± 1.0	76.5 ± 0.7	76.9 ± 1.3	$\textbf{79.2} \pm \textbf{0.6}$
	Cora	76.7 ± 0.9	78.3 ± 1.1	72.0 ± 0.3	71.6 ± 0.4	75.0 ± 2.0	78.4 ± 1.2	$\textbf{79.9} \pm \textbf{0.4}$
PGD	CiteSeer	67.8 ± 0.8	70.9 ± 1.0	62.2 ± 1.8	60.3 ± 2.4	68.9 ± 2.2	70.6 ± 1.0	$\textbf{73.1} \pm \textbf{0.5}$
FGD	PubMed	75.3 ± 1.6	73.8 ± 1.3	78.6 ± 0.4	81.9 ± 0.4	$\textbf{84.3}\pm\textbf{0.4}$	77.3 ± 0.7	77.4 ± 0.4
	CoraML	76.9 ± 1.2	75.0 ± 2.4	77.5 ± 0.3	73.1 ± 0.5	75.5 ± 0.8	81.3 ± 0.4	$\textbf{84.1} \pm \textbf{0.2}$
	Cora	74.9 ± 0.8	76.9 ± 0.9	79.6 ± 0.3	72.2 ± 1.4	75.6 ± 1.1	$\textbf{79.7} \pm \textbf{0.8}$	78.9 ± 0.4
DICE	CiteSeer	64.1 ± 0.5	66.0 ± 0.6	68.7 ± 0.5	62.6 ± 1.2	65.5 ± 1.1	68.9 ± 0.4	$\textbf{74.6} \pm \textbf{0.4}$
DICE	PubMed	79.4 ± 0.4	78.3 ± 0.2	$\textbf{79.8} \pm \textbf{0.4}$	76.6 ± 0.5	77.8 ± 0.7	79.2 ± 0.3	78.1 ± 0.6
	CoraML	78.3 ± 0.6	77.5 ± 0.3	80.1 ± 0.4	58.7 ± 0.4	77.5 ± 0.2	80.5 ± 1.3	$\textbf{81.1} \pm \textbf{0.8}$

Table: Attacked classification accuracy (\pm standard deviation) of the models on different benchmark node classification datasets after the structural attacks application.

• GCORN is also effective against structure-based, as well as combined structure and feature attacks.

Results - Robustness Certificates/Evaluations



(a) and (b) display $Adv_{\epsilon}^{\alpha,\beta}[f]$ for Cora and OGBN-Arxiv. (c) Robustness guarantees on Cora, where r_a, r_d are respectively the maximum number of adversarial additions and deletions.

• Similar performance analysis found using our proposed robustness evaluation and other available certificates.

^[1] Efficient robustness certificates for discrete data: Sparsity-aware randomized smoothing for graphs, images and more. Bojchevski & AI - ICML 2020.

Is It All Perfect ?

Table: Performance of GCN and our proposed GCORN model, for different used approximation orders, on the Cora dataset.

	GCN	GCORN(1 ord)	GCORN(2 ord)	GCORN(3 ord)
Training Time (in s)	2.8 ± 0.01	4.8 ± 0.07	8.7 ± 0.07	10.9 ± 0.08
Accuracy w/o attack	79.2 ± 1.6	78.8 ± 1.3	79.8 ± 0.9	80.8 ± 1.1
Accuracy w. attack	68.4 ± 1.9	77.1 ± 2.1	78.3 ± 1.1	78.6 ± 0.4

Table: Mean training time analysis (in s) of a our GCORN in comparison to the other benchmarks.

Dataset	GCN	GCN-K	AIRGNN	RGCN	GCORN
Cora	2.8	1.8	2.6	3.2	4.8
CiteSeer	2.4	5.8	2.9	2.4	4.6
PubMed	5.9	8.9	7.4	14.5	7.3
CS	6.1	12.1	12.4	13.8	15.5
Ogbn-Arxiv	77.8	185.8	68.1	161.6	78.4

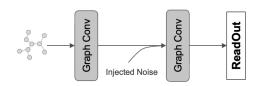
- Adversarial Robustness is computationally demanding.
- Can we do better ? A method "effective" and "simple".

A Simple and Yet Fairly Effective Defense for Graph Neural Networks Ennadir, Abbahaddou, Lutzeyer, Vazirgiannis & Boström (2024, AAAI)

Problem: Available defense methods suffers from **High complexity and training time** (often increasing with the input graph size).

Solution Approach: We propose a GNN, called the *NoisyGNN*, in which **hidden states are perturbed** by random noise following a normal distribution $N \sim \mathcal{N}(0, \beta I)$, i.e., our GNNs are of the form

$$\hat{y} = \sigma \left(\tilde{A} \operatorname{ReLU} \left(\tilde{A} X W^{(1)} + N \right) W^{(2)} \right).$$



Theoretical Results

Theorem (Upper Bounds on GNN Vulnerability).

We consider structural perturbations of the input graph (A, X), with a budget ϵ and 2-layer GNNs with 1-Lipschitz continuous activation functions and weight matrices $W^{(1)}, W^{(2)}$.

• Then, the vulnerability of GCNs is upper bounded by

$$\gamma = \frac{2(\|W^{(2)}\|\|W^{(1)}\|\|X\|\epsilon)^2}{\beta};$$

• Then, the vulnerability of GINs is upper bounded by

$$\gamma = \frac{(\|W^{(2)}\|\|W^{(1)}\|\|X\|\epsilon(2\|A\|+\epsilon))^2}{2\beta}$$

Theoretical Results

Theorem (Upper Bounds on GNN Vulnerability).

We consider structural perturbations of the input graph (A, X), with a budget ϵ and 2-layer GNNs with 1-Lipschitz continuous activation functions and weight matrices $W^{(1)}, W^{(2)}$.

• Then, the vulnerability of GCNs is upper bounded by

$$\gamma = \frac{2(\|W^{(2)}\|\|W^{(1)}\|\|X\|\epsilon)^2}{\beta};$$

• Then, the vulnerability of GINs is upper bounded by

$$\gamma = \frac{(\|W^{(2)}\|\|W^{(1)}\|\|X\|\epsilon(2\|A\|+\epsilon))^2}{2\beta}$$

Insight: Our upper bound on the vulnerability of a GNN is smaller for large β yielding a more robust GNN.

Experimental Results

Dataset	Attack Budget	GCNGuard	GCN-Jaccard	GCN-SVD	RGNN	NoisyGCN
	Clean	77.5 ± 0.7	80.9 ± 0.7	80.6 ± 0.4	$\textbf{83.5}\pm\textbf{0.3}$	83.2 ± 0.4
Cora	Budget (5%)	75.8 ± 0.6	78.9 ± 0.8	78.4 ± 0.6	78.3 ± 0.6	$\textbf{81.2}\pm\textbf{0.7}$
	Budget (10%)	74.7 ± 0.4	$\textbf{76.7} \pm \textbf{0.7}$	71.5 ± 0.8	70.7 ± 0.8	74.5 ± 0.6
	Clean	70.1 ± 1.5	71.2 ± 0.7	70.7 ± 0.4	$\textbf{72.3} \pm \textbf{0.5}$	71.9 ± 0.4
CiteSeer	Budget (5%)	69.9 ± 1.1	70.3 ± 2.3	68.9 ± 0.7	70.6 ± 0.7	$\textbf{72.3} \pm \textbf{0.6}$
	Budget (10%)	70.0 ± 1.5	67.5 ± 2.1	68.8 ± 0.6	68.7 ± 1.2	$\textbf{70.4} \pm \textbf{0.8}$
	Clean	84.5 ± 0.6	85.0 ± 0.5	82.7 ± 0.3	$\textbf{85.1} \pm \textbf{0.8}$	85.0 ± 0.6
PubMed	Budget (5%)	$\textbf{84.3}\pm\textbf{0.9}$	79.6 ± 0.3	81.3 ± 0.6	81.1 ± 0.7	81.8 ± 0.4
	Budget (10%)	$\textbf{84.1} \pm \textbf{0.3}$	67.4 ± 1.1	81.1 ± 0.7	65.2 ± 0.4	73.3 ± 0.6
	Clean	93.1 ± 0.6	-	86.5 ± 0.8	94.9 ± 0.3	$\textbf{95.2}\pm\textbf{0.4}$
PolBlogs	Budget (5%)	72.8 ± 0.8	-	$\textbf{85.1} \pm \textbf{1.6}$	76.0 ± 0.8	79.7 ± 0.6
	Budget (10%)	68.7 ± 1.0	-	$\textbf{84.8} \pm \textbf{2.3}$	69.2 ± 1.2	73.4 ± 0.5

Table: Node classification accuracy (\pm standard deviation) when subject to Mettack.

• Our NoisyGCNs sometimes outperform other defense methods.

Experimental Results - Time Complexity

Table: Mean training time analysis (in s) of the NoisyGNN in comparison to other baselines for both the GCN and GIN instances.

Dataset	GCNGUARD	GCN-Jaccard	RGCN	GCN-SVD	NoisyGCN
Cora	28.52	1.93	1.16	1.39	1.29
CiteSeer	36.04	1.58	1.23	1.12	1.24
PubMed	731.26	12.27	34.19	4.60	2.41
PolBlogs	18.17	5.17	0.96	0.80	0.65
DATASET	GINGUARD	GIN-JACCARD	RGCN	GIN-SVD	NoisyGIN
Dataset Cora	GINGUARD 48.93	GIN-JACCARD 3.12	RGCN 1.31	GIN-SVD	NoisyGIN 1.93
Cora	48.93	3.12	1.31	1.51	1.93

• NoisyGNNs are faster to train than most other defense methods.

Experimental Results - Time Complexity

Table: Mean training time analysis (in s) of the NoisyGNN in comparison to other baselines for both the GCN and GIN instances.

DATASET	GCNGUARD	GCN-Jaccard	RGCN	GCN-SVD	NoisyGCN
Cora	28.52	1.93	1.16	1.39	1.29
CiteSeer	36.04	1.58	1.23	1.12	1.24
PubMed	731.26	12.27	34.19	4.60	2.41
PolBlogs	18.17	5.17	0.96	0.80	0.65
DATASET	GINGUARD	GIN-JACCARD	RGCN	GIN-SVD	NoisyGIN
DATASET Cora	GINGUARD 48.93	GIN-JACCARD	RGCN 1.31	GIN-SVD	NoisyGIN 1.93
Cora	48.93	3.12	1.31	1.51	1.93

- NoisyGNNs are faster to train than most other defense methods.
- When combined with other defense methods, best performance is achieved.

• Graph Representation Learning is a highly active area of research at the moment gaining both academic and industrial interest.

- Graph Representation Learning is a highly active area of research at the moment gaining both academic and industrial interest.
- Graph Neural Networks are a versatile and powerful tool, that you may want to consider using but their adversarial robustness is still subject to questions.

- Graph Representation Learning is a highly active area of research at the moment gaining both academic and industrial interest.
- Graph Neural Networks are a versatile and powerful tool, that you may want to consider using but their adversarial robustness is still subject to questions.

Specifically, with regards to the presented projects:

• Both the introduction of noise and the orthonormalisation of weight matrices are viable avenues towards more robust Graph Neural Networks.

- Graph Representation Learning is a highly active area of research at the moment gaining both academic and industrial interest.
- Graph Neural Networks are a versatile and powerful tool, that you may want to consider using but their adversarial robustness is still subject to questions.

Specifically, with regards to the presented projects:

- Both the introduction of noise and the orthonormalisation of weight matrices are viable avenues towards more robust Graph Neural Networks.
- Aim for the GCORN approach when looking for better adversarial robustness.
- Aim for the NoisyGNN approach when looking for the right trade-off between robustness and time complexity.

- Graph Representation Learning is a highly active area of research at the moment gaining both academic and industrial interest.
- Graph Neural Networks are a versatile and powerful tool, that you may want to consider using but their adversarial robustness is still subject to questions.

Specifically, with regards to the presented projects:

- Both the introduction of noise and the orthonormalisation of weight matrices are viable avenues towards more robust Graph Neural Networks.
- Aim for the GCORN approach when looking for better adversarial robustness.
- Aim for the NoisyGNN approach when looking for the right trade-off between robustness and time complexity.

References

- Y. Abbahaddou, J. F. Lutzeyer & M. Vazirgiannis, "Graph Neural Networks on Discriminative Graphs of Words," NeurIPS New Frontiers in Graph Learning Workshop, 2023.
- I. J. Goodfellow, J. Shlens, & C. Szegedy, "Explaining and harnessing adversarial examples," International Conference of Learning Representations (ICLR), 2015.
- Y. Abbahaddou, S. Ennadir, J. F. Lutzeyer, M. Vazirgiannis & H. Boström, "Bounding the Expected Robustness of Graph Neural Networks Subject to Node Feature Attacks," International Conference on Learning Representations(ICLR), 2024.
- L. A. Adamic & N. Glance, "The political blogosphere and the 2004 US election: divided they blog," In Proceedings of the 3rd International Workshop on Link Discovery, pp. 36–43, 2005.
- H. Abdine, M. Chatzianastasis, C. Bouyioukos & M. Vazirgiannis, "Prot2Text: Multimodal Protein's Function Generation with GNNs and Transformers," *Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI)*, 2024.
- U. Alon & E. Yahav, "On the Bottleneck of Graph Neural Networks and its Practical Implications," In: International Conference on Learning Representations (ICLR), 2020.
- F. Borisyuk, S. He, Y. Ouyang, M. Ramezani, P. Du, X. Hou, C. Jiang, N. Pasumarthy, P. Bannur, B. Tiwana, P. Liu, "LiGNN: Graph Neural Networks at LinkedIn," arXiv:2402.11139, 2024.
- M. Bronstein, "Graph ML at Twitter," Twitter Engineering Blog Post, https://blog.twitter.com/engineering/en_us/topics/insights/2020/graph-ml-at-twitter, 2020.
- M. Bronstein, "Geometric Deep Learning: The Erlangen Programme of ML," Keynote Talk at The International Conference on Learning Representations, 2021.
- M. Chatzianastasis, J. F. Lutzeyer, G. Dasoulas & M. Vazirgiannis, "Graph Ordering Attention Networks," Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI), 2023.
- A. Deac, M. Lackenby & P. Veličković, "Expander Graph Propagation," arXiv:2210.02997, 2022.
- B. Doerr, A. Dremaux, J. F. Lutzeyer & A. Stumpf, "How the move acceptance hyper-heuristic copes with local optima: drastic differences between jumps and cliffs," In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), 2023.
- G. Dasoulas, J. F. Lutzeyer & M. Vazirgiannis, "Learning Parametrised Graph Shift Operators," In: International Conference on Learning Representations (ICLR), 2021.

- S. Ennadir, Y. Abbahaddou, J. F. Lutzeyer, M. Vazirgiannis & H. Boström, "A Simple and Yet Fairly Effective Defense for Graph Neural Networks," Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI), 2024. 2017.
- M. N. Hamid & I. Friedberg, "Transfer Learning Improves Antibiotic Resistance Class Prediction," biorxiv:10.1101/2020.04.17.047316, 2020.
- F. Geerts & J. L. Reutter, "Expressiveness and Approximation Properties of Graph Neural Networks," International Conference on Learning Representations (ICLR), 2022.
- J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals & G. E. Dahl, "Neural message passing for Quantum chemistry," Proceedings of the 34th International Conference on Machine Learning (ICML), 2017.
- S. Günnemann, "Graph Neural Networks: Adversarial Robustness," Graph Neural Networks: Foundations, Frontiers, and Applications, pp. 149–176, 2022.
- A. Jain, I. Liu, A. Sarda & P. Molino, "Food Discovery with Uber Eats: Using Graph Learning to Power Recommendations," Uber Engineering Blog Post, https://eng.uber.com/uber-eats-graph-learning/, 2019.
- J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli & D. Hassabis, "Highly accurate protein structure prediction with AlphaFold," *Nature*, pp. 583–589, 2021.
- Thomas N. Kipf & M. Welling, "Semi-supervised classification with graph convolutional networks," International Conference on Learning Representations (ICLR), 2017.
- O. Lange & L. Perez, "Traffic prediction with advanced Graph Neural Networks," DeepMind Research Blog Post, https://deepmind.com/blog/article/traffic-prediction-with-advanced-graph-neural-networks, 2020.
- Z. Lin, H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, A. dos Santos, Costa, M. Fazel-Zarandi, R. Sercu, S. Candido & A. Rives, "Language Models of Protein Sequences at the Scale of Evolution Enable Accurate Structure Prediction," *biorxiv*:10.1101/10.1101/2022.07.20.500902v1, 2022.
- G. Liu, D. B. Catacutan, K. Rathod, K. Swanson, W. Jin, J. C. Mohammed, A. Chiappino-Pepe, S. A. Syed, M. Fragis, K. Rachwalski, J. Magolan, M. G. Surette, B. K. Coombes, T. Jaakkola, R. Barzilay, J. J. Collins, J. M. Stokes, "Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii," *Nature Chemical Biology*, pp. 1–9, 2023.
- J. Lutzeyer, C. Wu & M. Vazirgiannis, "Graph Neural Network Simplification: Sparsifying the Update Step," ICLR Workshop on Geometrical and Topological Representation Learning, 2022.
- G. Michel, G. Nikolentzos, J. Lutzeyer & M. Vazirgiannis, "Path Neural Networks: Expressive and Accurate Graph Neural Networks," Proceedings of the 40th International Conference on Machine Learning (ICML), 2023.
- C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J.E Lenssen, G. Rattan & M. Grohe, "Weisfeiler and Lehman Go Neural: Higher-order Graph Neural Networks," Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4602–4609, 2019.

- G. Nikolentzos, M. Vazirgiannis, C. Xypolopoulos, M. Lingman & E. G. Brandt, "Synthetic Electronic Health Records Generated With Variational Graph Autoencoders," NPJ Digital Medicine, 2023.
- A. Qabel, S. Ennadir, G. Nikolentzos, J. F. Lutzeyer, M. Chatzianastasis, H. Boström & M. Vazirgiannis, "Structure-Aware Antibiotic Resistance Classification Using Graph Neural Networks," NeurIPS AI for Science Workshop, 2022.
- A. R. Ramos Vela, J. F. Lutzeyer, A. Giovanidis & M. Vazirgiannis, "Improving Graph Neural Networks at Scale: Combining Approximate PageRank and CoreRank," NeurIPS New Frontiers in Graph Learning Workshop, 2022.
- G. Salha-Galvan, J. F. Lutzeyer, G. Dasoulas, R. Hennequin & M. Vazirgiannis, "Modularity-Aware Graph Autoencoders for Joint Community Detection and Link Prediction," arxiv:2202.00961, 2022.
- G. Salha-Galvan, Contributions to Representation Learning with Graph Autoencoders and Applications to Music Recommendation, PhD thesis: École Polytechnique, Institut Polytechnique de Paris, 2022.
- M. E. A. Seddik, C. Wu, J. F. Lutzeyer & M. Vazirgiannis, "Node Feature Kernels Increase Graph Convolutional Network Robustness," International Conference on Artificial Intelligence and Statistics (AISTATS), 2022.
- J. M. Stokes, K. Yang, K. Swanson, W. Jin, A. Cubillos-Ruiz, N. M. Donghia, C. R. MacNair, S. French, L. A. Carfrae, Z. Bloom-Ackermann, V. M. Tran, A. Chiappino-Pepe, A. H. Badran, I. W. Andrews, E. J. Chory, G. M. Church, E. D. Brown, T. S. Jaakkola, R. Barzilay & J. J. Collins, "A Deep Learning Approach to Antibiotic Discovery," *Cell*, pp. 688–702, 2020.
- L. Sun, Y. Dou, C. Yang, J. Wang, P. S. Yu & B. Li, "Adversarial attack and defense on graph data: A survey," arXiv:1812.10528, 2020.
- S. Virinchi, A. Saladi & A. Mondal, "Recommending Related Products Using Graph Neural Networks in Directed Graphs," In: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), 2022.
- J. Wang, P. Huang, H. Zhao, Z. Zhang, B. Zhao & Dik Lun Lee, "Billion-scale Commodity Embedding for E-Commerce Recommendation in Alibaba," In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), pp. 839–848, 2018.
- K. Xu, W. Hu, J. Leskovec & S. Jegelka. "How powerful are graph neural networks?", International Conference on Learning Representations (ICLR), 2019.
- A. Björck , C. Bowie. "An Iterative Algorithm for Computing the Best Estimate of an Orthogonal Matrix", SIAM Journal on Numerical Analysis, 1971.
- R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton & J. Leskovec, "Graph Convolutional Neural Networks for Web-Scale Recommender Systems," In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD), pp. 974–983, 2018.
- Y. Zhou, H. Zheng & X. Huang, "Graph Neural Networks: Taxonomy, Advances and Trends," arXiv:2012.08752, 2020.