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Graph Representation Learning

Overall Goal: Learn “informative” representations of graph structured data

What is graph structured data?
It’s the combination of

• a graph G = (V ,E);

• node-features X = [x1, . . . , xn]
T .

Where does it arise?
It’s ubiquitous!

What can we learn from it?

• Node and Graph Classification

• Node and Graph Regression

• Link Prediction

US political weblogs
(Adamic & Glance, 2005)

Caffeine molecule
(Bronstein, 2021)

Deezer artists
(Salha-Galvan, 2022)
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Graph Neural Networks

Graph Neural Networks (GNNs) are neural networks that take graph-structured data as input.
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Iteratively performing the message-passing and update computations allows us to build ‘deep’ learning
models, e.g., a 3-layer GCN
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Academic and Industrial Success of GNNs

Empirical and Theoretical Research:

• expressivity analysis of GNNs
(Xu et al., 2019; Geerts and Reutter, 2022);

• bottlenecks, e.g., oversmoothing and oversquashing
(Alon and Yahav, 2020; Deac et al., 2022)

• robustness to adversarial attacks and noise
(Günnemann, 2022; Zhou et al., 2020).
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On the Robustness of GNNs

→ How Robust are GNNs?

–
[1] ETA Prediction with Graph Neural Networks in Google Maps. Derrow-Pinion & Al - CIKM 2021.
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Graph Adversarial Attacks

(Goodfellow et al., 2015)

To quantify the robustness of a graph-based function f : (A,X ) → Y we need:

• a distance on the input space dα,β
2 ([G ,X ], [G̃ , X̃ ]) = minP∈Π

(
α∥A− PÃPT∥2 + β∥X − PX̃∥2

)
,

• and a distance on the output space d1(f (G̃ , X̃ ), f (G ,X )) = ∥f (G̃ , X̃ )− f (G ,X )∥1.
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,

• and a distance on the output space d1(f (G̃ , X̃ ), f (G ,X )) = ∥f (G̃ , X̃ )− f (G ,X )∥1.

The set of adversarial graphs can be written as:

Ĝ = {[G̃ , X̃ ] | dα,β([G ,X ], [G̃ , X̃ ]) ≤ ϵ : f ([G̃ , X̃ ]) ̸= f ([G ,X ])}
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Graph Adversarial Attacks

We introduce the concept of “Adversarial Risk” for a graph-based classifier f as follows:

Advα,β
ϵ [f] = P(G,X)∼DG,X [(G̃, X̃) ∈ Bα,β(G,X, ϵ) : dY(f(G̃, X̃), f(G,X)) > σ], (1)

with: Bα,β(G ,X , ϵ) = {(G̃ , X̃ ) : dα,β([G ,X ], [G̃ , X̃ ]) < ϵ} being the input’s graph neighborhood.

Input Manifold ( Output Manifold (

Definition (Graph Adversarial Robustness).

The graph-based function f : (A,X ) → Y is said to be (ϵ, γ)− robust if its adversarial risk is
upper-bounded, i. e., Advα,β

ϵ [f ] ≤ γ with respect to the chosen graph distances.
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Problem Set-Up & Theoretical Results

Recall, Graph Neural Networks (GNNs) take both a graph A and node features X as input.

Problem: Most defense approaches for GNNs defend structural attacks altering A. There exists very
little work on how to defend against attacks on the node features X .

Main Theorem (Upper Bound on GCN Vulnerability).

We consider node-feature attacks on the input graph (A,X ), with a budget ϵ and L-layer GCNs with
weight matrices W (i) for i ∈ {1, . . . , L}.
Then, the adversarial risk of GCNs is upper bounded by

γ =
ϵ
∑

u∈V ŵu

σ
,

with ŵu denoting the sum of normalized walks of length (L− 1) starting from node u.

Insight: Our computed upper bound on the adversarial risk of a GCN is depedent on the weight
norm. Specifically, smaller

∏L
i=1∥W

(i)∥1 yields a more robust GCN.
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Generalization of the Theoritical Results

Recall, Graph Neural Networks (GNNs) take both a graph A and node features X as input.

Theorem 2 (Structural Attacks).

We consider structural attacks on the input graph (A,X ), with a budget ϵ and L-layer GCNs with
weight matrices W (i) for i ∈ {1, . . . , L}.
Then, the adversarial risk of GCNs is upper bounded by

γ =
L∏

i=1

∥W (i)∥2∥X∥2ϵ(1 + L
L∏

i=1

∥W (i)∥2)/σ.

Insight: The computed upper bound in the case of structural case shows similar findings as the case of
node-features based attacks. Specifically, the bound is depedent on the weight norm.
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Methodology

Fact: Orthonormal matrices have norm 1.
⇒ According to our bound; a GNN with orthonormal weight matrices should

be more robust.

Björk Orthonormalisation Algorithm (A. Björck and C. Bowie., 1971)

Given a weight matrix W we iteratively alter it to approximate the closest orthonormal matrix Ŵ .
When Ŵ0 = W , we recursively compute

Ŵk+1 = Ŵk

(
I + 1

2

(
I − Ŵ T

k Ŵk

)
+ . . .+ (−1)p

(−1/2
p

) (
I − Ŵ T

k Ŵk

)p)
.

Proposed Solution: In our GCORN model we propose the inclusion of several Björk Orthonormalisation
iterations in each forward pass during the training of a GCN, yielding weight matrices that approach
orthonormality and thereby a more robust GNN.
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Proposed Solution: In our GCORN model we propose the inclusion of several Björk Orthonormalisation
iterations in each forward pass during the training of a GCN, yielding weight matrices that approach
orthonormality and thereby a more robust GNN.
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Estimation of Our Robustness Measure

• Goal: Empirically estimate Advα,β
ϵ [f]

Advα,β
ϵ [f ] = E (G ,X )∼DG,X ,

(G̃ ,X̃ )∈Bα,β ((G ,X ),ϵ)

[
1{dY(f (G̃ , X̃ ), f (G ,X )) > σ}

]
.

• Insight: Use Stratified Sampling

• Sampling X̃ is equivalent to first sample Z ∈ Rn×K from Bϵ =
{
Z ∈ Rn×K : ∥Z∥X≤ ϵ

}
and

then set X̃ = X + Z
• Decomposition of Bϵ

Sr = {Z ∈ Rn×K : ∥Z∥X= r}, Bϵ = ∪r≤ϵSr ; ∀r ̸= r ′ Sr ∩ Sr′ = ∅.

Lemma

Let RK be the real finite-dimensional space and ϵ a positive real number. If R(p) is the random variable
indicating the maximum of the Lp norm’s values inside the ball of radius ϵ, i.e.,
Bϵ =

{
Z ∈ Rn×K : maxi∈{1,...,n}∥Zi∥p≤ ϵ

}
. Then, for every p > 0, the density distribution of R(p) does

not depends on p and is defined as follows, pϵ(r) = K 1
ϵ

(
r
ϵ

)K−1
1{0 ≤ r ≤ ϵ}.
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Estimation of Our Robustness Measure

• Goal: empirically estimate Advα,β
ϵ [f]

Advα,β
ϵ [f ] = E (G ,X )∼DG,X ,

(G̃ ,X̃ )∈Bα,β ((G ,X ),ϵ)

[
1{dY(f (G̃ , X̃ ), f (G ,X )) > σ}

]
.

Algorithm Estimation of Advα,β
ϵ [f ].

Inputs: Sphere Radius : ϵ > 0, Number of Samples Lmax , Number of Input Graphs |D|;
Initialize Adv = 0;
foreach [Gi ,Xi ] ∈ D do

Initialize Advi = 0;
foreach l = 1, . . . , Lmax do

1. Sample a distance r ∈ [0, ϵ] from the prior distribution pϵ;
2. Uniformly sample Zl ∈ Rn×K from Sr ;
3. Choose X̃l = Xi + Zl ;
4. Update

Advi ← Advi + 1{dY (f (G̃l , X̃l ), f (G ,X )) > σ}
end foreach
Advi = Advi/Lmax ; Adv = Adv + Advi ;

end foreach
Return Adv/ | D |
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Tightness of the Computer Theoretical Upper-Bound

Robustness Inequality:

Advα,β
ϵ [f ] ≤ γ =

L∏
i=1

∥W (i)∥∞ϵŵG/σ
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The Effect of Sampling on the Empirical Estimation Of Advα,βϵ [f ]
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Graph Adversarial Attacks

Different attack possibilities within the Graph:

• Edit Edges.

• Edit Nodes/Edges Features.

• Add/Delete Nodes.

And different settings:

• White Box (Full Knowledge).

• Black Box (No Knowledge assumed).

Feature-based Attacks:

• Random Attack – Injecting noise from a scaled centered Gaussian N (0, 1).

• Gradient-based – Mainly using “PGD” and “Nettack”.

Structure-based Attacks:

• Gradient-based – “Mettack” and “PGD”.

• Probabilistic gradient method – based on “DICE”.
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Results

Table: Node classification accuracy (± standard deviation) for feature-based attacks.

Attack Dataset GCN GCN-k AirGNN RGCN ParsevalR GCORN

Random

(ψ = 0.5)

Cora 68.4 ± 1.9 69.2 ± 2.6 73.5 ± 1.9 71.6 ± 0.3 72.9 ± 0.9 77.1 ± 1.8

CiteSeer 57.8 ± 1.5 62.3 ± 1.2 64.6 ± 1.6 63.7 ± 0.6 65.1 ± 0.8 67.8 ± 1.4

PubMed 68.3 ± 1.2 71.2 ± 1.1 70.9 ± 1.3 71.4 ± 0.5 71.8 ± 0.8 73.1 ± 1.1

CS 85.3 ± 1.1 86.7 ± 1.1 87.5 ± 1.6 88.2 ± 0.9 87.6 ± 0.6 89.8 ± 1.2

OGBN-Arxiv 68.2 ± 1.5 52.8 ± 0.5 66.5 ± 1.3 63.8 ± 1.9 68.3 ± 1.9 69.1 ± 1.8

Random

(ψ = 1.0)

Cora 41.7 ± 2.1 46.3 ± 2.8 53.7 ± 2.2 52.8 ± 1.6 55.3 ± 1.2 57.6 ± 1.9

CiteSeer 38.2 ± 1.3 45.3 ± 1.4 49.8 ± 2.1 43.7 ± 2.2 51.2 ± 1.2 57.3 ± 1.7

PubMed 60.1 ± 1.7 62.3 ± 1.3 62.4 ± 1.2 61.9 ± 1.2 61.3 ± 1.7 65.8 ± 1.4

CS 69.9 ± 1.3 73.2 ± 0.9 76.7 ± 2.8 76.2 ± 1.4 78.7 ± 1.2 81.3 ± 1.6

OGBN-Arxiv 66.4 ± 1.9 46.6 ± 0.6 62.7 ± 1.6 63.0 ± 2.4 66.1 ± 0.7 67.3 ± 2.1

PGD

Cora 54.1 ± 2.4 58.3 ± 1.6 68.2 ± 1.8 62.5 ± 1.2 68.6 ± 1.7 71.1 ± 1.4

CiteSeer 52.3 ± 1.1 59.6 ± 1.6 59.3 ± 2.1 61.9 ± 1.1 62.1 ± 1.5 65.6 ± 1.4

PubMed 66.1 ± 2.1 67.3 ± 1.3 70.8 ± 1.7 69.5 ± 0.9 68.9 ± 2.1 72.3 ± 1.3

CS 71.3 ± 1.1 74.1 ± 0.8 76.3 ± 2.1 76.6 ± 1.2 77.3 ± 0.6 79.6 ± 1.2

OGBN-Arxiv 67.5 ± 0.9 49.9 ± 0.7 55.7 ± 0.9 63.6 ± 0.7 67.6 ± 1.2 68.1 ± 1.1

Nettack

Cora 60.9 ± 2.5 64.2 ± 5.2 66.7 ± 3.8 63.4 ± 3.8 67.5 ± 2.5 68.3 ± 1.4

CiteSeer 55.8 ± 1.4 71.7 ± 1.4 67.5 ± 2.5 70.8 ± 3.8 69.2 ± 3.8 77.5 ± 2.5

PubMed 60.0 ± 2.5 65.8 ± 2.9 69.2 ± 1.4 71.7 ± 3.8 68.3 ± 1.4 70.8 ± 1.4

CS 55.8 ± 1.4 71.6 ± 1.4 76.7 ± 1.4 71.7 ± 2.9 75.8 ± 2.8 78.3 ± 1.4

OGBN-Arxiv 49.2 ± 2.9 53.3 ± 1.4 56.7 ± 1.4 52.6 ± 2.5 55.8 ± 1.4 55.8 ± 1.4

• Our GCORN model often outperforms existing defense approaches when subject to feature
based attacks.
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Results - Structural Attacks

Table: Attacked classification accuracy (± standard deviation) of the models on different benchmark node
classification datasets after the structural attacks application.

Attack Dataset GCN GCN-Jaccard RGCN GNN-SVD GNN-Guard ParsevalR GCORN

Mettack

Cora 73.0 ± 0.7 75.4 ± 1.8 69.2 ± 0.3 73.6 ± 0.9 74.4 ± 0.8 71.9 ± 0.7 77.3 ± 0.5

CiteSeer 63.2 ± 0.9 69.5 ± 1.9 68.9 ± 0.6 65.8 ± 0.6 68.8 ± 1.5 68.3 ± 0.8 73.7 ± 0.3

PubMed 60.7 ± 0.7 62.9 ± 1.8 65.1 ± 0.4 82.1 ± 0.8 84.8 ± 0.3 69.5 ± 1.1 71.8 ± 0.4

CoraML 73.1 ± 0.6 75.4 ± 0.4 77.1 ± 1.1 71.3 ± 1.0 76.5 ± 0.7 76.9 ± 1.3 79.2 ± 0.6

PGD

Cora 76.7 ± 0.9 78.3 ± 1.1 72.0 ± 0.3 71.6 ± 0.4 75.0 ± 2.0 78.4 ± 1.2 79.9 ± 0.4

CiteSeer 67.8 ± 0.8 70.9 ± 1.0 62.2 ± 1.8 60.3 ± 2.4 68.9 ± 2.2 70.6 ± 1.0 73.1 ± 0.5

PubMed 75.3 ± 1.6 73.8 ± 1.3 78.6 ± 0.4 81.9 ± 0.4 84.3 ± 0.4 77.3 ± 0.7 77.4 ± 0.4

CoraML 76.9 ± 1.2 75.0 ± 2.4 77.5 ± 0.3 73.1 ± 0.5 75.5 ± 0.8 81.3 ± 0.4 84.1 ± 0.2

DICE

Cora 74.9 ± 0.8 76.9 ± 0.9 79.6 ± 0.3 72.2 ± 1.4 75.6 ± 1.1 79.7 ± 0.8 78.9 ± 0.4

CiteSeer 64.1 ± 0.5 66.0 ± 0.6 68.7 ± 0.5 62.6 ± 1.2 65.5 ± 1.1 68.9 ± 0.4 74.6 ± 0.4

PubMed 79.4 ± 0.4 78.3 ± 0.2 79.8 ± 0.4 76.6 ± 0.5 77.8 ± 0.7 79.2 ± 0.3 78.1 ± 0.6

CoraML 78.3 ± 0.6 77.5 ± 0.3 80.1 ± 0.4 58.7 ± 0.4 77.5 ± 0.2 80.5 ± 1.3 81.1 ± 0.8

• GCORN is also effective against structure-based, as well as combined structure and feature
attacks.
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Results - Robustness Certificates/Evaluations
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(a) and (b) display Advα,β
ϵ [f ] for Cora and OGBN-Arxiv. (c) Robustness guarantees on Cora, where ra, rd are

respectively the maximum number of adversarial additions and deletions.

• Similar performance analysis found using our proposed robustness evaluation and other available
certificates.

–
[1] Efficient robustness certificates for discrete data: Sparsity-aware randomized smoothing for graphs, images
and more. Bojchevski & Al - ICML 2020.
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Is It All Perfect ?

Table: Performance of GCN and our proposed GCORN model, for different used approximation orders, on the
Cora dataset.

GCN GCORN(1 ord) GCORN(2 ord) GCORN(3 ord)

Training Time (in s) 2.8 ± 0.01 4.8 ± 0.07 8.7 ± 0.07 10.9 ± 0.08

Accuracy w/o attack 79.2 ± 1.6 78.8 ± 1.3 79.8 ± 0.9 80.8 ± 1.1

Accuracy w. attack 68.4 ± 1.9 77.1 ± 2.1 78.3 ± 1.1 78.6 ± 0.4

Table: Mean training time analysis (in s) of a our GCORN in comparison to the other benchmarks.

Dataset GCN GCN-K AIRGNN RGCN GCORN

Cora 2.8 1.8 2.6 3.2 4.8

CiteSeer 2.4 5.8 2.9 2.4 4.6

PubMed 5.9 8.9 7.4 14.5 7.3

CS 6.1 12.1 12.4 13.8 15.5

Ogbn-Arxiv 77.8 185.8 68.1 161.6 78.4

• Adversarial Robustness is computationally demanding.

• Can we do better ? A method “effective” and “simple”.
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A Simple and Yet Fairly Effective Defense
for Graph Neural Networks

Ennadir, Abbahaddou, Lutzeyer, Vazirgiannis & Boström (2024, AAAI)

Problem: Available defense methods suffers from High complexity and training time (often
increasing with the input graph size).

Solution Approach: We propose a GNN, called the
NoisyGNN, in which hidden states are perturbed by
random noise following a normal distribution
N ∼ N (0, βI ), i.e., our GNNs are of the form

ŷ = σ
(
Ã ReLU

(
ÃXW (1)+N

)
W (2)

)
.
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Theoretical Results

Theorem (Upper Bounds on GNN Vulnerability).

We consider structural perturbations of the input graph (A,X ), with a budget ϵ and 2-layer GNNs with
1-Lipschitz continuous activation functions and weight matrices W (1),W (2).

• Then, the vulnerability of GCNs is upper bounded by

γ =
2(∥W (2)∥∥W (1)∥∥X∥ϵ)2

β
;

• Then, the vulnerability of GINs is upper bounded by

γ =
(∥W (2)∥∥W (1)∥∥X∥ϵ(2∥A∥+ϵ))2

2β
.

Insight: Our upper bound on the vulnerability of a GNN is smaller for large β yielding a more robust
GNN.
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Experimental Results

Dataset Attack Budget GCNGuard GCN-Jaccard GCN-SVD RGNN NoisyGCN

Cora

Clean 77.5 ± 0.7 80.9 ± 0.7 80.6 ± 0.4 83.5 ± 0.3 83.2 ± 0.4

Budget (5%) 75.8 ± 0.6 78.9 ± 0.8 78.4 ± 0.6 78.3 ± 0.6 81.2 ± 0.7

Budget (10%) 74.7 ± 0.4 76.7 ± 0.7 71.5 ± 0.8 70.7 ± 0.8 74.5 ± 0.6

CiteSeer

Clean 70.1 ± 1.5 71.2 ± 0.7 70.7 ± 0.4 72.3 ± 0.5 71.9 ± 0.4

Budget (5%) 69.9 ± 1.1 70.3 ± 2.3 68.9 ± 0.7 70.6 ± 0.7 72.3 ± 0.6

Budget (10%) 70.0 ± 1.5 67.5 ± 2.1 68.8 ± 0.6 68.7 ± 1.2 70.4 ± 0.8

PubMed

Clean 84.5 ± 0.6 85.0 ± 0.5 82.7 ± 0.3 85.1 ± 0.8 85.0 ± 0.6

Budget (5%) 84.3 ± 0.9 79.6 ± 0.3 81.3 ± 0.6 81.1 ± 0.7 81.8 ± 0.4

Budget (10%) 84.1 ± 0.3 67.4 ± 1.1 81.1 ± 0.7 65.2 ± 0.4 73.3 ± 0.6

PolBlogs

Clean 93.1 ± 0.6 - 86.5 ± 0.8 94.9 ± 0.3 95.2 ± 0.4

Budget (5%) 72.8 ± 0.8 - 85.1 ± 1.6 76.0 ± 0.8 79.7 ± 0.6

Budget (10%) 68.7 ± 1.0 - 84.8 ± 2.3 69.2 ± 1.2 73.4 ± 0.5

Table: Node classification accuracy (± standard deviation) when subject to Mettack.

• Our NoisyGCNs sometimes outperform other defense methods.
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Experimental Results - Time Complexity

Table: Mean training time analysis (in s) of the NoisyGNN in comparison to other baselines for both the GCN
and GIN instances.

Dataset GCNGuard GCN-Jaccard RGCN GCN-SVD NoisyGCN

Cora 28.52 1.93 1.16 1.39 1.29

CiteSeer 36.04 1.58 1.23 1.12 1.24

PubMed 731.26 12.27 34.19 4.60 2.41

PolBlogs 18.17 5.17 0.96 0.80 0.65

Dataset GINGuard GIN-Jaccard RGCN GIN-SVD NoisyGIN

Cora 48.93 3.12 1.31 1.51 1.93

CiteSeer 58.45 3.78 1.44 2.20 2.76

PubMed 963.58 16.28 41.09 6.33 7.86

PolBlogs 43.7 5.52 0.95 3.71 3.16

• NoisyGNNs are faster to train than most other defense methods.

• When combined with other defense methods, best performance is achieved.
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Conclusions

• Graph Representation Learning is a highly active area of research at the moment gaining both
academic and industrial interest.

• Graph Neural Networks are a versatile and powerful tool, that you may want to consider using but
their adversarial robustness is still subject to questions.

Specifically, with regards to the presented projects:

• Both the introduction of noise and the orthonormalisation of weight matrices are viable avenues
towards more robust Graph Neural Networks.

• Aim for the GCORN approach when looking for better adversarial robustness.

• Aim for the NoisyGNN approach when looking for the right trade-off between robustness and time
complexity.
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