Defining Expertise Applications to Treatment Effect Estimation

Alihan Hüyük,* Qiyao Wei,* Alicia Curth, Mihaela van der Schaar

qw281@cam.ac.uk

linkedin.com/in/qiyaowei

Expertise and Treatment Effect Estimation

Decision-makers are often experts of their domains (often the main cause of confounding)

"Expertise" can be informative in TE estimation!

A TOY EXAMPLE

- Outcomes: $Y_0 = 0, Y_1 \sim \mathcal{N}(T, 1)$ where T is the ATE
- Prior: $T \sim \mathcal{N}(0,1)$
- Suppose $A \sim \mathcal{B}(0.5)$: $\mathbb{E}[T|Y_1 = y_1] = y_1$
- Suppose $A = \mathbb{I}\{T > 0\}$: $\mathbb{E}[T|Y_1 = y_1, A = 1] > y_1$

Yet, the overlap assumption is usually the only assumption made (expertise is ignored as an information source)

Definitions of Expertise

Predictive Expertise

$A \sim \pi(X) = \pi(\mu_1(X) - \mu_0(X))$

e.g. doctors try to assign the treatments with the largest benefit to the patient

$$E_{\text{pred}}^{\pi} = \frac{I(A^{\pi}; Y_1 - Y_0)}{\mathbb{H}[A^{\pi}]}$$

Prognostic Expertise

$$A \sim \pi(X) = \pi(\mu_0(X), \mu_1(X))$$

e.g. teachers might target students who struggle the most (not who would benefit the most)

$$E_{\text{prog}}^{\pi} = \frac{I(A^{\pi}; Y_0, Y_1)}{\mathbb{H}[A^{\pi}]}$$

Different Types of Expertise

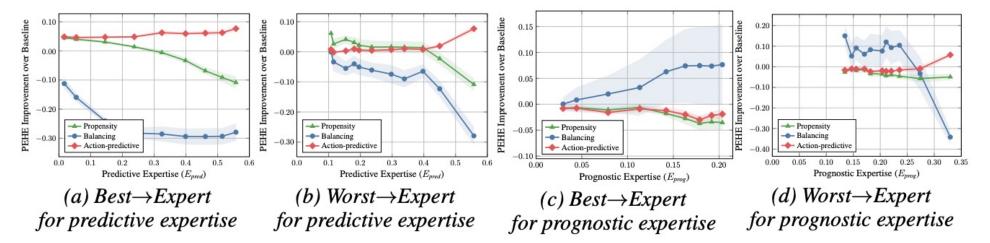
Predictive Expertise	Prognostic Expertise
$A \sim \pi(X) = \pi(\mu_1(X) - \mu_0(X))$ e.g. doctors try to assign the treatments with the largest benefit to the patient	$A \sim \pi(X) = \pi(\mu_0(X), \mu_1(X))$ e.g. teachers might target students who struggle the most (not who would benefit the most)

Knowing the type of expertise prominent in a domain is important!

Consider balancing representations:

- *learns* $Z = \rho(X)$ *such that* $A \perp Z$
- would not work well under predictive expertise
- might work well under prognostic expertise (w/o predictive expertise)

Performance under Different Expertise Scenarios

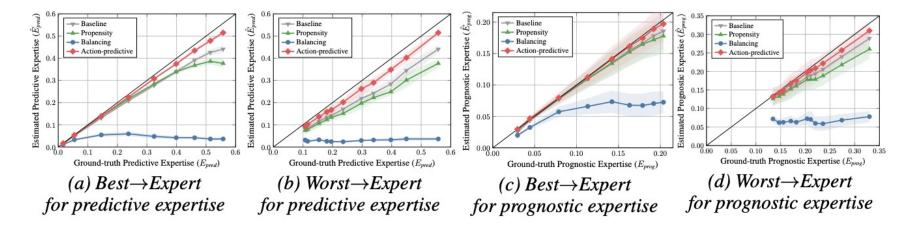


Predictive Expertise

Prognostic Expertise

On average, Action-Predictive performs the best under Predictive Expertise
 Balancing performs the best under Prognostic Expertise

Estimating Expertise

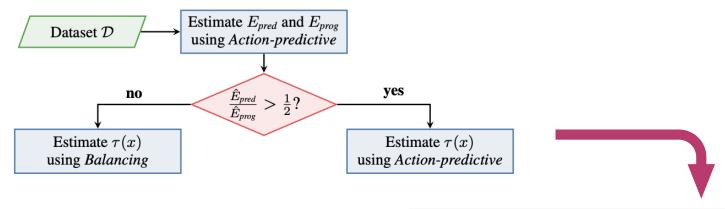


Predictive Expertise

Prognostic Expertise

• However, *Action-Predictive* is uniformly better at predicting expertise!

Expertise-Informed Treatment Effect Estimation



Method	Predictive Datasets	Prognostic Datasets	All Datasets
Baseline	0.784 (0.130)	1.483 (0.258)	1.134 (0.194)
Propensity	0.786 (0.126)	1.511 (0.259)	1.149 (0.193)
Balancing	0.936 (0.131)	1.439 (0.243)	1.188 (0.187)
Action-predictive	0.751 (0.128)	1.495 (0.259)	1.123 (0.194)
Expertise-informed	0.751 (0.128)	1.439 (0.243)	1.096 (0.185)

(Best-of-Both-Worlds)

More details in our paper!

Defining Expertise:
Application to Treatment Effect Estimation

Theory of Expertise

Predictive Expertise

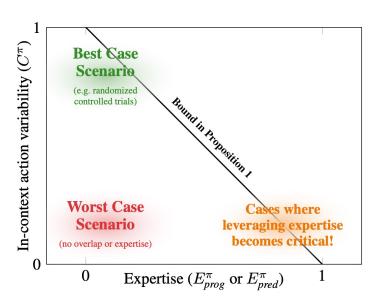
Prognostic Expertise

$$E_{\text{pred}}^{\pi} = I(A^{\pi}; Y_1 - Y_0) / \mathbb{H}[A^{\pi}]$$

$$E_{\text{prog}}^{\pi} = I(A^{\pi}; Y_0, Y_1) / \mathbb{H}[A^{\pi}]$$

• In-context Action Variability (i.e. Overlap): $C^{\pi} = \mathbb{H}[A^{\pi}|X]/\mathbb{H}[A^{\pi}]$

• Proposition 1: $E^{\pi} + C^{\pi} \leq 1$



Theory of Expertise: Experimental Setup

