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Large Language Models (LLMs)

[ “translate English to German: That is good.

“cola sentence: The
course is jumping well."

"Das ist gut."]

“not acceptable"]
"stsb sentencel: The rhino grazed

on the grass. sentence2: A rhino
is grazing in a field."

dispatched emergency crews tuesday to a storm in attala county.”
survey the damage after an onslaught
of severe weather in mississippi.."

"summarize: state authorities "six people hospitalized after J




Training LLMs needs high quality data

Stage 1: Pretraining

Elephants are the largest existing land

animals. Three living species are currently ht

recognised: the African bush... pen
l Jgeserse or
l WILIT OLriel 1ridies...
Arbitrary Unstructured Data
Stage 2: Instruction Tuning
Question: Why is the sky blue?
Answer: The sky appears blue because of |
a phenomenon called Rayleigh... s, kaie
101esLs, 100U 11idue OulL Ul... ‘ns |

l ldave peell udllieu uUll.

LLM

Task-Related Data
(Sample interactions, RLHF, etc.)

LLM

High quality
data,
scraped
from web or
collected
from
humans.
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Are we running out of high-quality data?

—— Extrapolation based on compute
—— Extrapolation from trend
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Synthetic data to the rescue?

What if the models could generate
their own training data?

Pr*obable events are oveﬁ-estimo:te,d

N a |Ve Iy Improboxue events are under-estimated

d OI n g SO Finte Sampling / \ Approxima‘te F\u‘t‘tiv\g
can

result in {, Do
model e

co I I a pse! Probable events poison reo\,?tt/

Tails shrink over tim
The Curse of Recursion: Training on Generated Data Makes Models Forget. Shumailov et al, 2023. S e <



Synthetic data to the rescue?

Verification can often be easier than Generation!

ARBAHE GIVEN A STRING, FIND THE LENGTH OF
; 7 RO > f THE LONGEST SUBSTRING WITHOUT
SN NEIN INE NEPEATING CHARACTERS,

8l | 1709 Generating code can be harder tnan verifying it

Solving sudoku puzzles is
harder than checking one!

Can we use model-generated data for training
given access to some form of feedback?
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How do we self-generate data for

problem-solving?

on Monday. On Tuesday it

A stock loses 10% of its value
loses 20%...

LLM Responses

Is the response

Vs

Okay, so | have to find the

_ percent of the starting... )

correct?

v

J

The stock loses 10% of its
value on Monday...

\
O
J

Model

Problem

| need to find the overall
percent loss in value...

\
—©
J

generated
Fine-tuning
data

Let's start by representing
the unknown value of...

~

—@

" LetV be the value of the | 0
L stock at the beginning of... )
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A simple recipe for self-training (ReST=M)

Repeat this process a few times:

1. Generate samples from the model and filter them using
binary feedback. (E-step)

2. Fine-tune the model on these samples (M-step)

This process corresponds to expectation-maximization based RL! Check the
math in the paper.

Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models (TMLR) 2023. Singh*, Co-reyes*, Agarwal* et al
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Problem-Solving tasks: Math & Coding

Hendrycks MATH

Problem: The equation 22 + 2x = 7 has two complex
solutions. Determine the product of their real parts.

Solution: Complete the square by adding 1 to each side.

Then (z +1)2=1+i=e%v/2,s0z+1=+e% /2.
The desired product is then

(~1+cos (§) ¥2) (~1 - cos (3) ¥2) =
1 — cos? (%)\/ézl_(l—f-cos(%))f 1—

IS

APPS Coding (Intro)

We will buy a product for N yen (the currency of Japan) at
a shop. If we use only 1000-yen bills to pay the price, how
much change will we receive? Assume we use the
minimum number of bills required.

----- Constraints----- - 1 \leq N \leq 10000 - N is an integer.
----- Input----- Input is given from Standard Input in the

100

We will use two 1000-yen bills to pay the price and receive
100 yen in change.

Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models (TMLR) 2023. Singh*, Co-reyes*, Agarwal* et al
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This... beats human data!

. Hendrycks MATH = Transfer to GSM8K
9\.0, @ ¢ 3\0, ® @
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Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models. 2023. Singh*, Co-reyes*, Agarwal* et al
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ReSTM works on coding too.

APPS (Introductory) Transfer to HumanEval

N N
= (©)]
Ul
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N

N
w1
o

Pass@1 Test Accuracy (%)
Pass@1 Test Accuracy (%)

20 45 " °
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Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models. 2023. Singh*, Co-reyes*, Agarwal* et al
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Overfitting is an issue

Hendrycks MATH APPS (Introductory)
[¢) )
X 60 X 60
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Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models. 2023. Singh*, Co-reyes*, Agarwal* et al
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Pass@K performance improves as well

80%

60%

40%

Pass @ K Test Accuracy (%)

HumanEval APPS (Introductory)
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20 40 60
Num samples (K)

Pass@K measures the probability that at least one of the top k-generated solution for a problem is correct.

Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models. 2023. Singh*, Co-reyes*, Agarwal* et al
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Apples-to-Apples Comparison

Hendrycks MATH (Test)

SFT (7K) SFT (5K) ReST" (5K) ReSTEM (5K)
Method (Num questions)

o
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I
o

w
(9)]
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w
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N

Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models. 2023. Singh*, Co-reyes*, Agarwal* et al
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Distilling Palm-2-S using L

)
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Impact on reasoning tasks
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Held-Out Eval: 2023 Hungarian HS Exam

Exam Score vs GSM8K Performance of Various Models

GPT-4
90 .Claude 2
PaLM 2-L (ReSTEME*
80 MetaMath Mistral 7I_3. .OpenChat 3.5
RS
Qv 70 ¢etaMath 78
o Grok-1
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Q 60 Grok-0 (33B). .GPT—3.5 Turbo
00 Qwen 7B .Llemma 34B
[ )
= 50 $1AmmoTH 78
O]
40 J\/Iistral 7B
30 .Code Llama 34B
20 30 40 50 60 70

Hungarian HS Finals Exam Score (%)
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Things we learned so far:

e Self-generated data improves performance, given reliable reward.
e Self-generated data can often outperform human data - it's more
in-distribution!
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Revisiting ReST=M

Repeat this process a few times:

1. Generate samples from the model and filter them using
binary feedback.

2. Fine-tune the model on these samples

Discard the large amounts of incorrect solutions generated during this
process, potentially neglecting valuable information!
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Incorrect solutions for training verifiers

LLM Responses Is the response
correct?

J

( Okay, so | have to find the
| percent of the starting... )

4 N
The stock loses 10% of its | 0/ Learr?ed
_ value on Monday... verifier

E—

J
A stock loses 10% of its value . )
on Monday. On Tuesday it I need t?{ 1|°|nd ’ghe olverall —
loses 20%... _ percent loss in value...
Problem Let's start by representing O
the unknown value of...

Let's Verify Step by Step. OpenAl, 2023.
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How to use a verifier?

LLM Responses

Calculate probability of
being correct
4

( Okay, so | have to find the |

10% of the starting...

/

The stock loses 5% of its
value on Monday...

A stock loses 5% of its value
on Monday. On Tuesday it
loses 10%...

2N

| need to find the overall
percent loss in value...

verifier

~

verifier

Problem

Let's start by representing W

verifier

the unknown value of... J

Let's Verify Step by Step. OpenAl, 2023.

verifier

—0
0
—O
—©
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ldea: Augmenting ReSTEM

with a verifier

: Test-time verification
DGEN Union ‘
& y“) : g e ?;3 (x”y ! ) (x,9")
. Y 2: )2 9L, ’
: SFT Generate (x3, y3) Label | (x3, y3,\/) Fllter\/ (x5 y3 \/) ‘ (x,9%) 9
i /' (x 92 /'
: B, :

{xl,xz, Xy

prm——

v

@39 (7t
{ : }DPO kVJ

Union !
Dygr . — | Training iteration ¢ : | Inference

x = problem, y = model-generated solution

V-STaR: Training Verifiers for Self-Taught Reasoners. Hosseini et al. 2024
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V-STaR: ReST*M + verifier works quite well!

70 50
+35.2 o SFT +25.0
60 mmm ReSTEM +20.1
o +17. s 40 Verification
350 +18.1 +12.9 > W= V-STaR s
© ©
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40,' 30 4‘;; 20 s
& & +5.
20
10
10
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Large gains on math and code reasoning with LLaMA2 7B and 13B models.

V-STaR: Training Verifiers for Self-Taught Reasoners. Hosseini et al. 2024
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V-STaR: Performance across iterations

Ver.1

Ver.2

54.2

Ver.3

Gen.1 Gen.2 Gen.3

V-STaR: Training Verifiers for Self-Taught Reasoners. Hosseini et al. 2024
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A Strong Baseline: Majority Voting

LLM Responses

f Okay, so | have to find the |

percent of the starting...

Final answer

I Majority Voting
Answer

p
The stock loses 10% of its

value on Monday...

A stock loses 10% of its value
on Monday. On Tuesday it
loses 20%...

| need to find the overall
percent loss in value...

Problem

:
—

J

N
—

J

Let's start by representing

the unknown value of...

-

Let's Verify Step by Step. OpenAl, 2023.
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V-STaR Outperforms Majority Voting.

62
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>
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L
3> 58
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<
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@ g s ;
Majority Voting
>4 —— V-STaR
V-STaR [1 Iter]
52

4 16 64 128
Number of completions per problem

V-STaR: Training Verifiers for Self-Taught Reasoners. Hosseini et al. 2024
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Things we learned so far:

e We can train a verifier, using both correct and incorrect solutions.
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Revisiting ReST=M (yet again!)

Repeat this process a few times:

1. Generate samples from the model and filter them using
binary feedback.

2. Fine-tune the model on these samples

Is fine-tuning necessary? Wait, what?
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Background: In-Context Learning

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt
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Many-Shot In-Context Learning

Task Performance in %
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Many-Shot In-Context Learning. Agarwal et al, 2024
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In-Context ReSTEM: Reinforced ICL

1. Generate samples from the model and filter
them using binary feedback.

2. Put these (problem, solution) pairs
in-context for the model.
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Reinforced ICL on MATH

----- 4-shot InnerMono. MATH Prompt
MATH500
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Reinforced ICL on Big-Bench Hard

Multistep Arithmetic Tw Logical Deduction [Seven] Geometric Shapes Salient Translation Error Detection
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Reinforced ICL: lteration 2
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On-policy Distillation of LLMs:
Learning from Self-Generated Mistakes

Teacher Model

P e e e e e - —— -y

The generic framework of teacher-student knowledge distillation training. (Image source: Gou et al. 2020)



https://lilianweng.github.io/posts/2023-01-10-inference-optimization/%E2%80%9Dhttps://arxiv.org/abs/2006.05525%E2%80%9D
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Why Distill: Aren’t bigger LLMs better?

e Deployment of “large” models
limited by either their inference
cost or memory footprint.

O

You can’t put PaLM 540B on
your smartphone.

You don’t want to typically wait
several minutes for an ML
model to generate an output.
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What is Model Compression?

The main idea is to simplify the model without diminishing accuracy. A
simplified model means reduced in size and/or latency from the original.

> Size reduction can be achieved by reducing the model parameters and
thus using less RAM.

> Latency reduction can be achieved by decreasing the time it takes for
the model to make a prediction, and thus lowering energy consumption
at runtime (and carbon footprint).
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Language models generate text

[ ]
auto-regressively!

oo g |

New token 1 Probability s

“aab” 0.001
: “Alice” 0.04 ;
*“The orange cat” Large Language Model —“The orange cat ate” ;
Titar “ate” 0.9

Language models (LMs) generate outputs sequentially token by
token - later output tokens depend on past tokens!
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Distribution Mismatch (Exposure Bias)

Expert trajectory
Existing methods typically Learned Policy >/
train on a fixed dataset of
output sequences. This results EA
. . . No data on
in @ mismatch with the how to recover || 44 Y
sequences generated by the

student auto-regressively
during inference.

Well-known in the Imitation learning community.

On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes. ICLR 2024.
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Model Underspecification

If student is often not expressive enough to fit the teacher’s distribution, standard KD objective can lead
to unnatural student-generated samples. MLE = KL(P||Q).

By e ]
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Generalized Knowledge Distillation (GKD)

> Sample self-generated output sequences from the student model.

> Run inference on the teacher to get logits on these sequences - (what
the teacher would do in this situation)

> Minimize the mismatch between the student and teacher logits for
each token.

On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes. ICLR 2024.
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Task-specific GKD Results

Supervised Fine-Tuning Supervised KD SeqKkD GKD (On-policy)
XSum (Summarization) WMT (Translation) GSM8K (Reasoning w/ CoT)
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On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes. ICLR 2024.
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DistillSpec: KD for Speculative Decoding

[START] japan '

In

benchmark bend n

I

[START] japan

iwn

benchmark nikkei 22 ;5

b M

[START] japan

benchmark nikkei 225 index rose 22 -6

[START] japan ; s benchmark nikkei EEE index rose ggg . 92 7 Bgiﬂzi

[START] japan ' s benchmark nikkei 225 index rose 226 . 69 221235 sorel

[START] japan ; s benchmark nikkei EEE index rose ZEE . Eg Egiﬂff , or } . E Bffffﬂf : Eg lg . gﬁég

[START] japan IS benchmark nikkei 225 index rose 226 . 69 Egifff 5 orl.5percent, to 10 , 989 . 79 - iﬂ

[START] japan ' s benchmark nikkei 225 index rose 226 . 69 points , or 1 . 5 percent , to 10 , 989 . 79 in tekye late

[START] japan ls benchmark nikkei 225 index rose 226 . 69 Egiﬂff 5 0r 1.5 percent , to 10 , 989 . 79 32 }333 morning trading . [END]

Fast Inference from Transformers via Speculative Decoding. ICML 2023.
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DistillSpec: KD for Speculative Decoding

[ DistillSpec (Greedy) 1 Standard SD (Greedy) =71 DistillSpec (Non-Greedy) 1 Standard SD (Non-Greedy)
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DistillSpec: Improving Speculative Decoding via Knowledge Distillation. ICLR 2024.
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Thank you!
Questions?



