IMPROVING LARGE LANGUAGE MODELS USING SELF-GENERATED DATA

Rishabh Agarwal Research Scientist, Google DeepMind

Large Language Models (LLMs)

"translate English to German: That is good."

"cola sentence: The course is jumping well."

"stsb sentence1: The rhino grazed on the grass. sentence2: A rhino is grazing in a field."

"summarize: state authorities dispatched emergency crews tuesday to survey the damage after an onslaught of severe weather in mississippi..." "six people hospitalized after a storm in attala county."

"Das ist gut."

"not acceptable"

"3.8"

GPT - 4

Training LLMs needs high quality data

Stage 1: Pretraining

Arbitrary Unstructured Data

Stage 2: Instruction Tuning

Task-Related Data (Sample interactions, RLHF, etc.)

High quality data, scraped from web or collected from humans.

Are we running out of high-quality data?

epochai.org

Synthetic data to the rescue?

What if the models could generate their own training data?

Naively doing so can result in model collapse! Probable events are over-estimated Improbable events are under-estimated Finite Sampling Approximate Fitting Datan modeln Probable events poison reality Tails shrink over time

The Curse of Recursion: Training on Generated Data Makes Models Forget. Shumailov et al, 2023.

Synthetic data to the rescue?

Verification can often be easier than Generation!

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Solving sudoku puzzles is harder than checking one!

GIVEN A STRING, FIND THE LENGTH OF THE LONGEST SUBSTRING WITHOUT REPEATING CHARACTERS.

Generating code can be harder than verifying it via test case execution.

Can we use model-generated data for training given access to some form of feedback?

How do we self-generate data for problem-solving?

A stock loses 10% of its value on Monday. On Tuesday it loses 20%...

Let's start by representing the unknown value of...

Okay, so I have to find the

Let V be the value of the stock at the beginning of...

Model generated Fine-tuning data

X

Problem

A simple recipe for self-training (ReST^{EM})

Repeat this process a few times:

- 1. Generate samples from the model and filter them using binary feedback. (E-step)
- 2. Fine-tune the model on these samples (M-step)

This process corresponds to **expectation-maximization based RL!** Check the math in the paper.

Problem-Solving tasks: Math & Coding

Hendrycks MATH

Problem: The equation $x^2 + 2x = i$ has two complex solutions. Determine the product of their real parts. **Solution:** Complete the square by adding 1 to each side. Then $(x+1)^2 = 1 + i = e^{\frac{i\pi}{4}}\sqrt{2}$, so $x + 1 = \pm e^{\frac{i\pi}{8}}\sqrt[4]{2}$. The desired product is then $\left(-1 + \cos\left(\frac{\pi}{8}\right)\sqrt[4]{2}\right)\left(-1 - \cos\left(\frac{\pi}{8}\right)\sqrt[4]{2}\right) =$ $1 - \cos^2\left(\frac{\pi}{8}\right)\sqrt{2} = 1 - \frac{\left(1 + \cos\left(\frac{\pi}{4}\right)\right)}{2}\sqrt{2} = \left[\frac{1 - \sqrt{2}}{2}\right]$.

APPS Coding (Intro)

We will buy a product for N yen (the currency of Japan) at a shop. If we use only 1000-yen bills to pay the price, how much change will we receive? Assume we use the minimum number of bills required.

-----Constraints----- 1 \leq N \leq 10000 - N is an integer. -----Input----- Input is given from Standard Input in the following format: N

-----Output----- Print the amount of change as an integer. -----Sample Input-----

1900

-----Sample Output-----

100

We will use two 1000-yen bills to pay the price and receive 100 yen in change.

This... beats human data!

ReST^{EM} works on coding too.

Overfitting is an issue

Pass@K performance improves as well

Pass@K measures the probability that at least one of the top k-generated solution for a problem is correct.

Apples-to-Apples Comparison

Distilling Palm-2-S using L

Impact on reasoning tasks

Held-Out Eval: 2023 Hungarian HS Exam

Things we learned so far:

- Self-generated data improves performance, given reliable reward.
- Self-generated data can often outperform human data it's more in-distribution!

Google DeepMind

Revisiting ReST^{EM}

Repeat this process a few times:

- 1. Generate samples from the model and filter them using binary feedback.
- 2. Fine-tune the model on these samples

Discard the large amounts of incorrect solutions generated during this process, potentially neglecting valuable information!

Incorrect solutions for training verifiers

How to use a **verifier**?

Google DeepMind

Idea: Augmenting ReST^{EM} with a verifier

V-STaR: ReST^{EM} + verifier works quite well!

Large gains on math and code reasoning with LLaMA2 7B and 13B models.

V-STaR: Training Verifiers for Self-Taught Reasoners. Hosseini et al. 2024

V-STaR: Performance across iterations

V-STaR: Training Verifiers for Self-Taught Reasoners. Hosseini et al. 2024

A Strong Baseline: Majority Voting

Let's Verify Step by Step. OpenAl, 2023.

V-STaR Outperforms Majority Voting.

V-STaR: Training Verifiers for Self-Taught Reasoners. Hosseini et al. 2024

Things we learned so far:

- Self-generated data improves performance, given reliable reward.
- Self-generated data can often outperform human data it's more in-distribution!
- We can train a verifier, using both correct and incorrect solutions.

Revisiting ReST^{EM} (yet again!)

Repeat this process a few times:

- 1. Generate samples from the model and filter them using binary feedback.
- 2. Fine-tune the model on these samples

Is fine-tuning necessary? Wait, what?

Background: In-Context Learning

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Many-Shot In-Context Learning

In-Context ReST^{EM}: Reinforced ICL

- 1. Generate samples from the model and filter them using binary feedback.
- 2. Put these (problem, solution) pairs in-context for the model.

Reinforced ICL on MATH

Reinforced ICL on Big-Bench Hard

Reinforced ICL: Iteration 2

On-policy Distillation of LLMs: Learning from Self-Generated Mistakes

The generic framework of teacher-student knowledge distillation training. (Image source: Gou et al. 2020)

Why Distill: Aren't bigger LLMs better?

- Deployment of "large" models limited by either their inference cost or memory footprint.
 - You can't put PaLM 540B on your smartphone.
 - You don't want to typically wait several minutes for an ML model to generate an output.

What is Model Compression?

The main idea is to simplify the model without diminishing accuracy. A simplified model means reduced in size and/or latency from the original.

- Size reduction can be achieved by reducing the model parameters and thus using less RAM.
- Latency reduction can be achieved by decreasing the time it takes for the model to make a prediction, and thus lowering energy consumption at runtime (and carbon footprint).

Language models generate text auto-regressively!

Language models (LMs) generate outputs sequentially token by token – later output tokens depend on past tokens!

Distribution Mismatch (Exposure Bias)

Existing methods typically train on a fixed dataset of output sequences. This results in a mismatch with the sequences generated by the student auto-regressively during inference.

Well-known in the Imitation learning community.

On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes. ICLR 2024.

Model Underspecification

If student is often not expressive enough to fit the teacher's distribution, standard KD objective can lead to unnatural student-generated samples. MLE = KL(P||Q).

Generalized Knowledge Distillation (GKD)

- Sample self-generated output sequences from the student model.
- Run inference on the teacher to get logits on these sequences (what the teacher would do in this situation)
- Minimize the mismatch between the student and teacher logits for each token.

On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes. ICLR 2024.

Task-specific GKD Results

On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes. ICLR 2024.

DistillSpec: KD for Speculative Decoding

[START]	japan	' S	benchmark	bond n																				
[START]	japan	' <u>s</u>	benchmark	nikkei	22	5																		
[START]	japan	' <u>s</u>	benchmark	nikkei	225	index	rose	22 :	5															
[START]	japan	' S	benchmark	nikkei	225 Цан	index	rose	226	69	I point	S													
[START]	japan	' S	benchmark	nikkei	225	index	rose	226	69	points	, or	<mark>0 1</mark>												
[START]	japan	' 5	benchmark	nikkei	225 Цан	index	rose	226 H	. 69	points	i or	1 :	5 perc	ent ;	to 1	0 i	9859							
[START]	japan	' S	benchmark	nikkei	225	index	rose	226	69	points	i or	1:	5 perc	ent :	to 1	<u>0</u> ,	989	. 79	: i	n				
[START]	japan	' S	benchmark	nikkei	225	index	rose	226	69	points	, or	1:	5 perc	ent ,	to 1	<u>0</u> ,	989 11	. 79	in	tokyo la	ate			
[START]	japan	' s	benchmark	nikkei	225	index	rose	226	. 69	points	, or	1:	5 perc	ent ,	to 1	Θ,	989	. 79	in	late mor	rning	trading	[END]	

Fast Inference from Transformers via Speculative Decoding. ICML 2023.

DistillSpec: KD for Speculative Decoding

DistillSpec: Improving Speculative Decoding via Knowledge Distillation. ICLR 2024.

Thank you! Questions?