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Are LLMs just parroting their training data? 

● Language models are so large that they can fully memorize their training data, how can we guarantee that 
they are not simply overfitting to their training data? 



Back to the learning paradigm 

What do we minimize? The empirical risk with 0-1 loss:

Dog or cat?
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What do we minimize? The empirical risk with 0-1 loss:

What do we really care about? The population risk, i.e., 
risk beyond training data: 

Dog or cat?



Back to the learning paradigm 

Empirical risk vs. population risk: 

vs.

What if we could guarantee that a model will 
generalize to new data just by looking at the 

model and the training data? 
R(h) ≤ upper bound

Dog or cat?



Generalization through the lens of compression 
● Say we train a model to fit the MNIST data with randomly shuffled labels. 

○ Can the training error be zero?
○ Can the test error be zero? 

Models that perfectly fit random data are incompressible since random data itself does 
not contain any structure that makes it compressible, in contrast to real-world data. 

Label: 7 Label: 0 Label: 3 Label: 9 Label: 5 Label: 4 



Compression, simplicity bias and generalization 

Figures from Information Theory, Inference, and Learning Algorithms, page 343, David J. C. MacKay



Compression, simplicity bias and generalization 

Figures from Information Theory, Inference, and Learning Algorithms, page 343, David J. C. MacKay

● Occam’s razor principle: models with low complexity and a low training error are simple explanations 
of the data that generalize better. 

● R(h) ≤ model complexity + empirical risk. 



In this work, we aim to: 

● Provide a mathematical proof that the stochastic parrot hypothesis is false.

● Understand generalization in LLMs as we increase their scale through the lens of compression. 

● Demonstrate the importance of LLM pre-training. 

● By providing the first non-vacuous generalization bounds for LLMs, we open the door for follow-up 
work that further studies LLM properties using  generalization bounds. 



Finite Hypothesis Generalization Bounds  



Finite hypothesis generalization bounds  

● Empirical risk with 0-1 loss:

● Consider the population risk:                                            . 



Finite hypothesis generalization bounds  

● Empirical risk with 0-1 loss:

● Consider the population risk:                                            . 

● With probability at least  1-𝛿, the population risk of hypothesis h using n data samples satisfies: 

● The population risk is bounded by the empirical risk and a complexity term which counts the 
number of bits needed to specify any hypothesis h. 



Finite hypothesis generalization bounds  

● With probability at least  1-𝛿, the population risk of hypothesis h using n data samples satisfies: 

● What if we don’t believe that each hypothesis is equally likely? Construct a prior distribution P 
over the hypothesis class that concentrates around likely hypotheses. Any given hypothesis h will 
take                         bits to represent.  



Finite hypothesis generalization bounds  

● Finite hypothesis bound: with probability at least  1-𝛿, the population risk of hypothesis h and a 
bounded risk of range Δ using m data samples is the following:  

● The higher the prior likelihood of the found model is, the tighter the generalization bounds are. 



How do we choose the prior?

● Inspired by Occam’s razor, we want to:
○ Encourage simple hypotheses that can fit the data well;
○ Penalize the minimum compressed length of the hypothesis. 

How do we achieve this?

● We introduce the notion of the “Kolmogorov complexity”:

The Kolmogorov complexity of an output is the length of the shortest program under 
a fixed language that produces that output.



How do we choose the prior?

● The Kolmogorov complexity of an output is the length of the shortest program under a fixed 
language that produces that output.

Figure from https://knowledgezone.co.in/kbits/63e8dd1fed03cfa5ce2f4fa4 

https://knowledgezone.co.in/kbits/63e8dd1fed03cfa5ce2f4fa4


How do we choose the prior?

● We adopt the Solomonoff prior:

where K is the prefix Kolmogorov complexity of h, conditioned on the model architecture A, and we can 
compute the upper bound on K that depends on C(h), the compressed size of h: 



How do we choose the prior?

● We adopt the Solomonoff prior:

where K is the prefix Kolmogorov complexity of h, conditioned on the model architecture A, and we can 
compute the upper bound on K that depends on C(h), the compressed size of h: 

Goal: find hypotheses h that both have a low empirical risk and a small compressed size to 
construct tight non-vacuous generalization bounds.



LLM-specific Challenges in Bound Construction



Task that we care about

● Next token prediction task:

                              

● Pre-train an LLM on text from a collection  
of documents:

   

● We want a guarantee that the LLM will 
generalize to new unseen documents 
sampled from the same distribution as 
their training set. 



LLM-specific Challenges in Bound Construction 

● The relevant NLL or bits-per-dimension 
metric  is a continuous and unbounded 
for which previously used non-vacuous 
bounds are invalid. 

● We derive new generalization bounds 
that can be applied to these unbounded 
losses through prediction smoothing.

Challenges Contributions
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LLM-specific Challenges in Bound Construction 

● The relevant NLL or bits-per-dimension 
metric  is a continuous and unbounded 
for which previously used non-vacuous 
bounds are invalid. 

● LLMs are trained on massive datasets 
that make bound evaluation very 
expensive. 

● LLMs have orders of magnitude more 
parameters than image classification 
models; making model compression 
more challenging. 

● We derive new generalization bounds 
that can be applied to these unbounded 
losses through prediction smoothing.

● We derive subsampling bounds which 
make  bound computation 900 times 
faster on OpenWebText (~9B tokens).

● We introduce SubLoRA: a nonlinear 
parameterization for LLMs to train 
compressed models from scratch. 

Challenges Contributions



Constructing Bounds Applicable for LLMs



Bounding the NLL loss by applying prediction smoothing.

● Challenge? The log-likelihood and BPD are unbounded quantities.

● Solution? We construct generalization bounds for NLL not of the original model but instead on a 
smoothed version of it that limits the worst case behavior: 
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Using sub-sampling in bound computation

● Our generalization bound:

● We modify our generalization bounds to account for evaluating only a subsample of size n much 
smaller than the size of the training dataset m when computing the empirical risk: 

 

Empirical risk evaluation can be expensive; up to 3 days on 4 GPUs for the 
OpenWebText dataset (~9B tokens).  What can we do about it? 



Using sub-sampling in bound computation

● Our generalization bound:

● We modify our generalization bounds to account for evaluating only a subsample of size n much 
smaller than the size of the training dataset m when computing the empirical risk: 

 

Empirical risk evaluation can be expensive; up to 3 days on 4 GPUs for the 
OpenWebText dataset (~9B tokens).  What can we do about it? 

The evaluation of the bound for the OpenWebText dataset becomes ~45mins on a single GPU; ~900x faster.



SubLoRA: An Simple and Efficient Non-Linear 
Parameterization of the Hypothesis Space



Intrinsic dimensionality (Li et al., 2018)

● We want to train a compressed version of the original model that retains good empirical 
performance.

● Turns out: that’s possible! 

● Example: MNIST, LeNet (45k parameters), ID = 290!



LoRA: Low-Rank Adaptation of LLMs (Hu et al., 2021)

W0



SubLoRA: Subspace-Enhanced Low-Rank Adaptation

● SubLoRA, combines low rank adaptation (LoRA) which replaces LLM weights with trainable rank 
decomposition matrices, and linear subspace compression using intrinsic dimension:

We use LoRA for pretraining rather than fine-tuning, and find that LoRA leads to good 
performance even when used for training from scratch.



SubLoRA: Subspace-Enhanced Low-Rank Adaptation

● Combining both LoRA and subspace compression yields the best bounds, while using LoRA alone 
yields vacuous bounds for top-1 error.



Non-Vacuous Generalization Bounds for LLMs



We achieve non-vacuous generalization bounds for LLMs

● We train variants of the GPT-2 architecture through our nonlinear compressed parameterization, 
SubLoRA, on the OpenWebText dataset. 

● The tightest bounds are achieved using SubLoRA.



Larger models yield better bounds

● As we increase the scale of LLMs, do they become more likely to merely memorize their training 
samples and not perform any meaningful generalization beyond their training corpora?

Our findings: 

● As we scale up the size of the model via the model parameters holding the training set fixed, our 
bounds get better and the models become more compressible, i.e., find simpler solutions. 



Conclusion and Future Work 



Conclusions 
● Despite containing a very large number of parameters, LLMs are highly compressible and have a 

simplicity bias. 

● Using highly compressed LLMs, we computed the first non-vacuous generalization bounds for LLM 
pretraining. 

● Bigger LLMs are able to find even simpler solutions. 

● Pre-training leads to significantly tighter generalization bounds, providing a mathematical certification 
for the value of pre-trained LLMs. 



Future work
● Can we provide non-IID token-level bounds?

● Can we construct bounds for models that generate high quality text?

● Can we find more expressive non-linear parameterizations that simultaneously reduce the number of 
parameters while also including diverse functions which are likely to fit the training data? 
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