Decomposing and Editing Predictions by Modeling Model Computation

Harshay Shah, Andrew Ilyas, Aleksander Mądry

https://arxiv.org/abs/2404.11534

gradientscience.org/modelcomponents

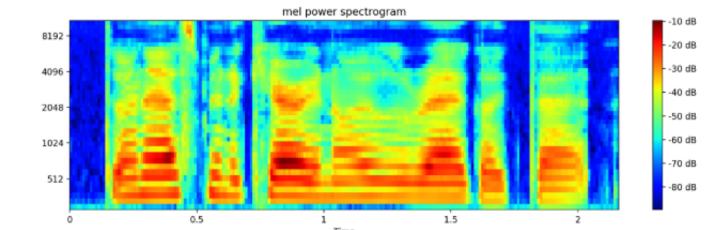
ICML 2024

Why study model predictions?

Tinker your ML pipeline

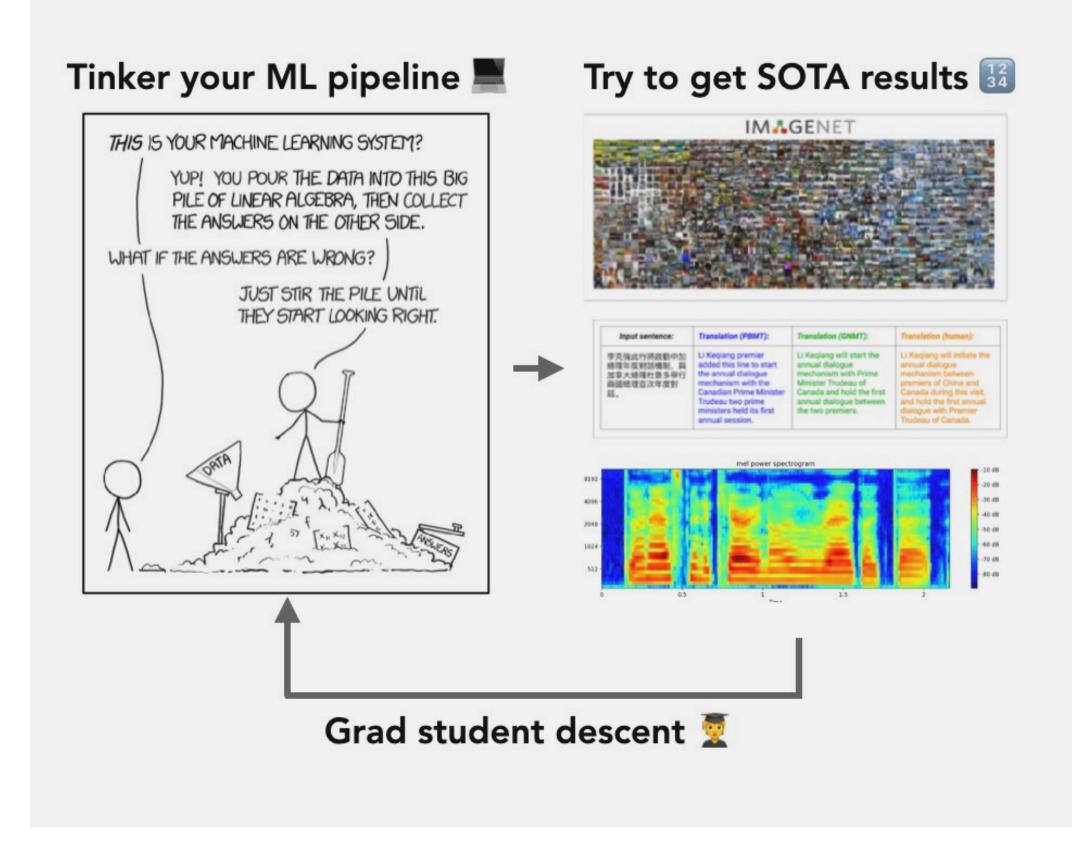
Try to get SOTA results 🔢

Input sentence:	Translation (PBMT):	Translation (GNMT):	Translation (human):
李克強此行將啟動中加 總理年度對訪機制。與 諸章大總理杜魯多舉行 商國總理首次年度對 話。	Li Kegiang premier added this line to start the annual dialogue mechanism with the Canadian Prime Minister Trudeau two prime ministers held its first annual session.	Li Keqiang will start the annual dialogue mechanism with Prime Minister Trudeau of Canada and hold the first annual dialogue between the two premiers.	Li Keqiang will initiate the annual dialogue mechanism between premiers of China and Canada during this visit, and hold the first annual dialogue with Premier Trudeau of Canada.



Repeat

Why study model predictions?



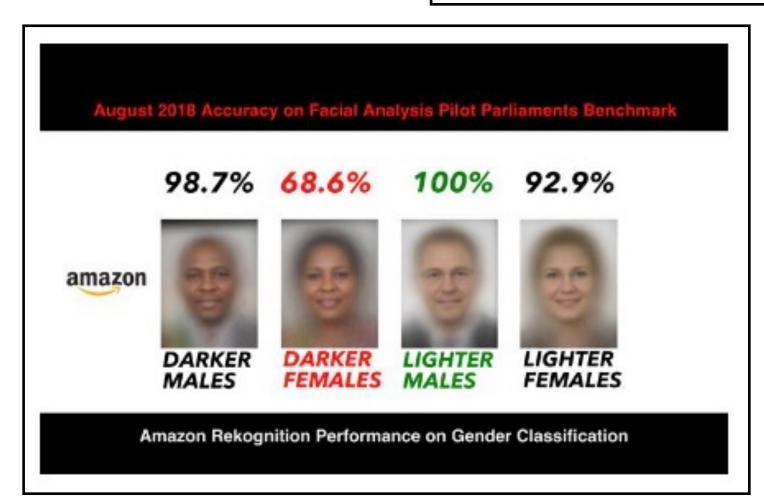
Core issue: We don't understand how models internally turn examples into predictions

11

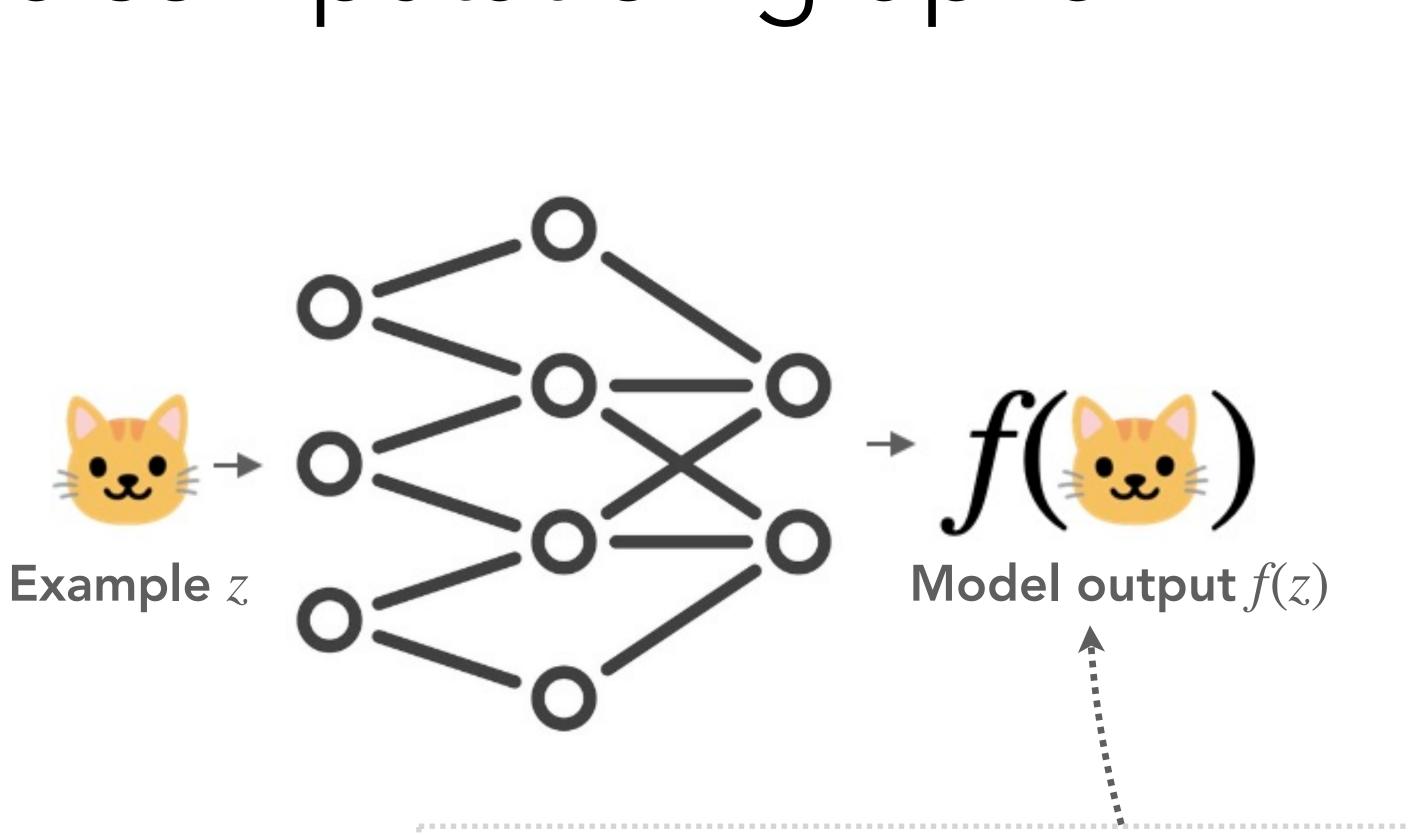
Autopilot'

Deep Learning for Medical Imaging Fares Poorly on External Data

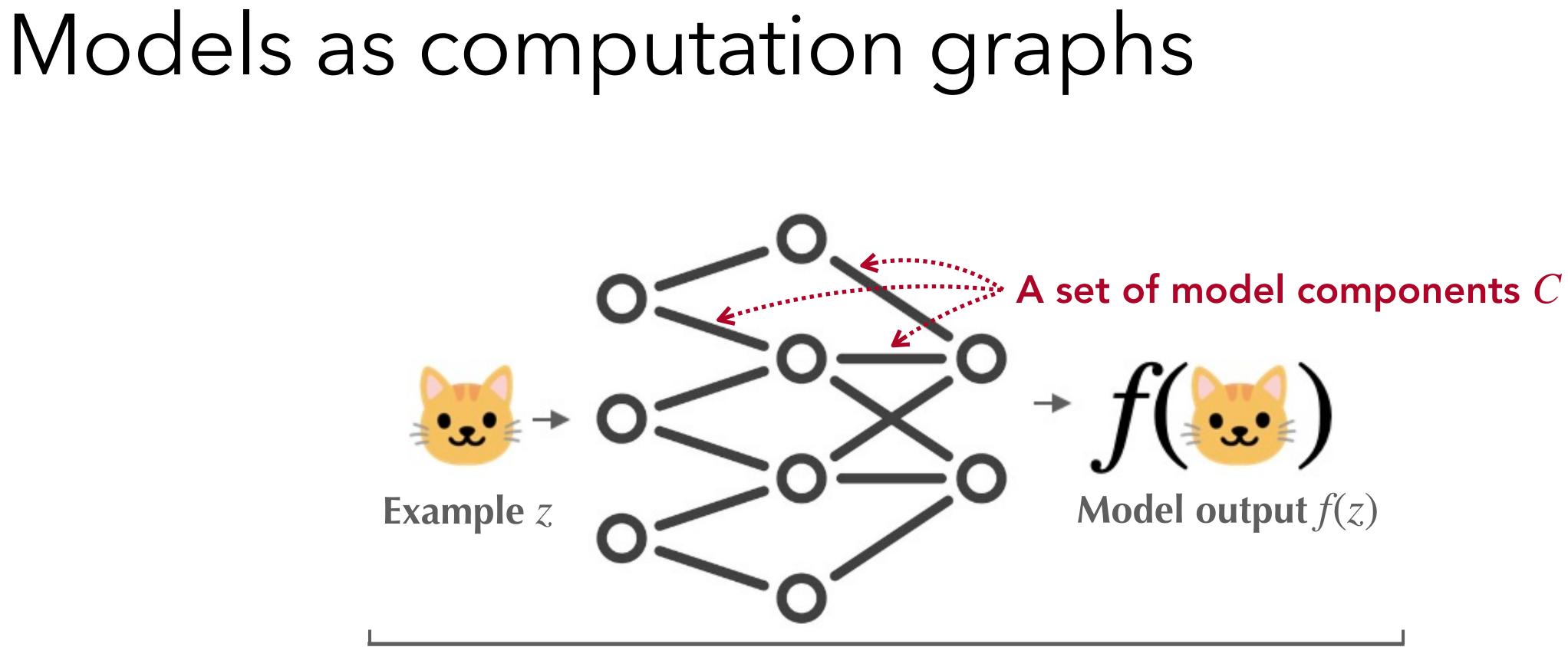
Deep learning may not assess medical images from external organizations as accurately as data from the institution where it is trained.



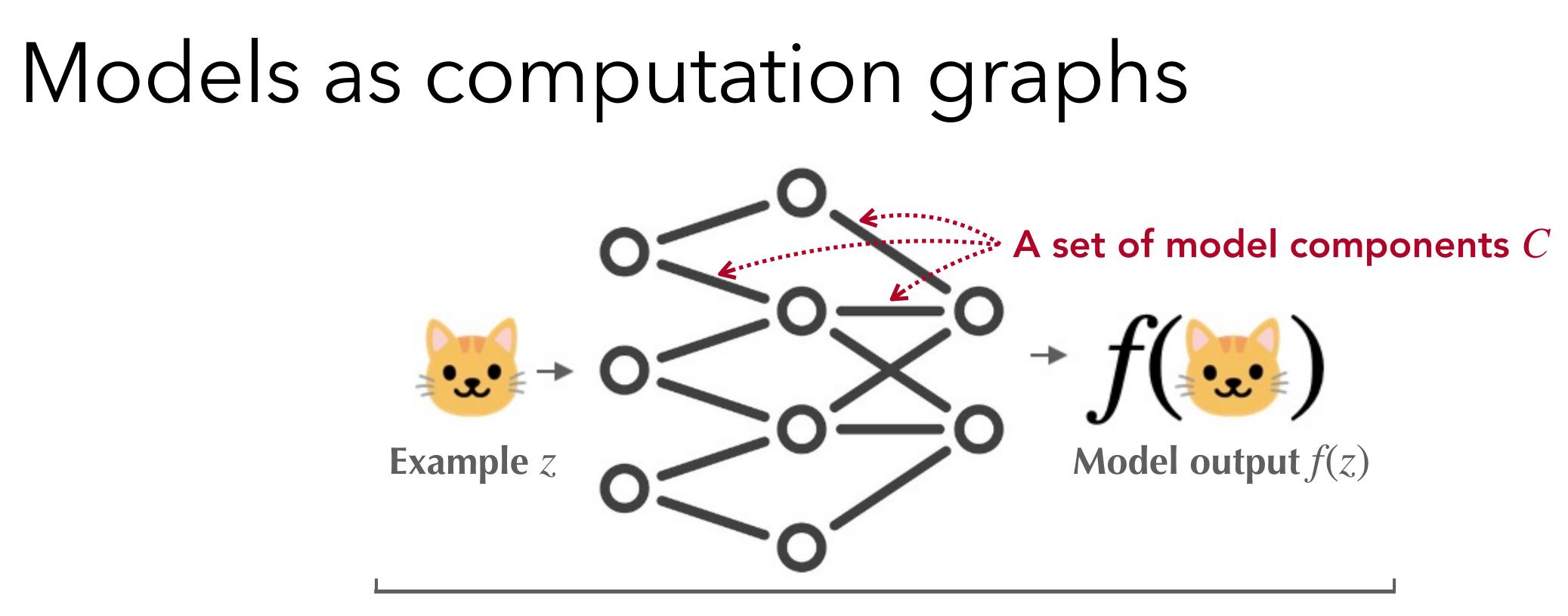
Models as computation graphs



Any metric that quantifies "correctness" e.g., cross-entropy loss, correct-class confidence., etc



Model *f* as a computation graph over model components



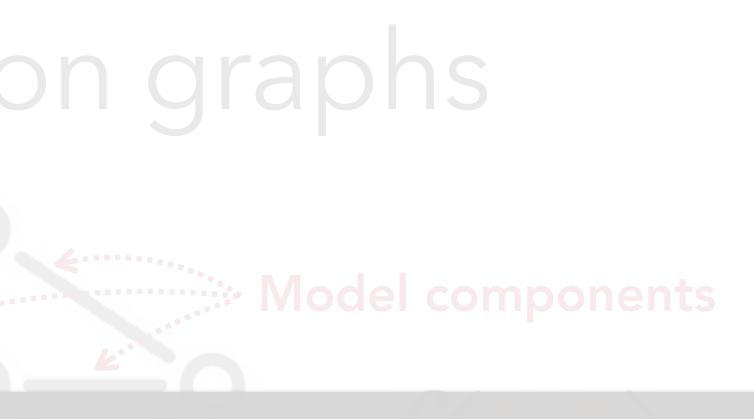
Model *f* as a computation graph over model components

Examples of model components in common model architecturesConvolution filters in ResNet modelsWeight vectors in MLPsAttention heads & MLPs in TransformersCoefficients in linear models

High-level question

Convolution filters in ResNet models

Attention heads & MLPs in Transformers



Can we somehow understand how model components collectively turn examples into predictions?

> Weight vectors in MLPs Parameters in linear models

Background: interpreting model components

Convolution filters learn to detect curves and frequency [Cammarata et al. 2020]

unit 149 "mountain top" (acc lost: train 1.2% val 3.5%)

unit 242 "house" (acc lost: train 1.5% val 2.5%)

Convolution filters in deeper layers detect high-level concepts [Bau et al. 2020]

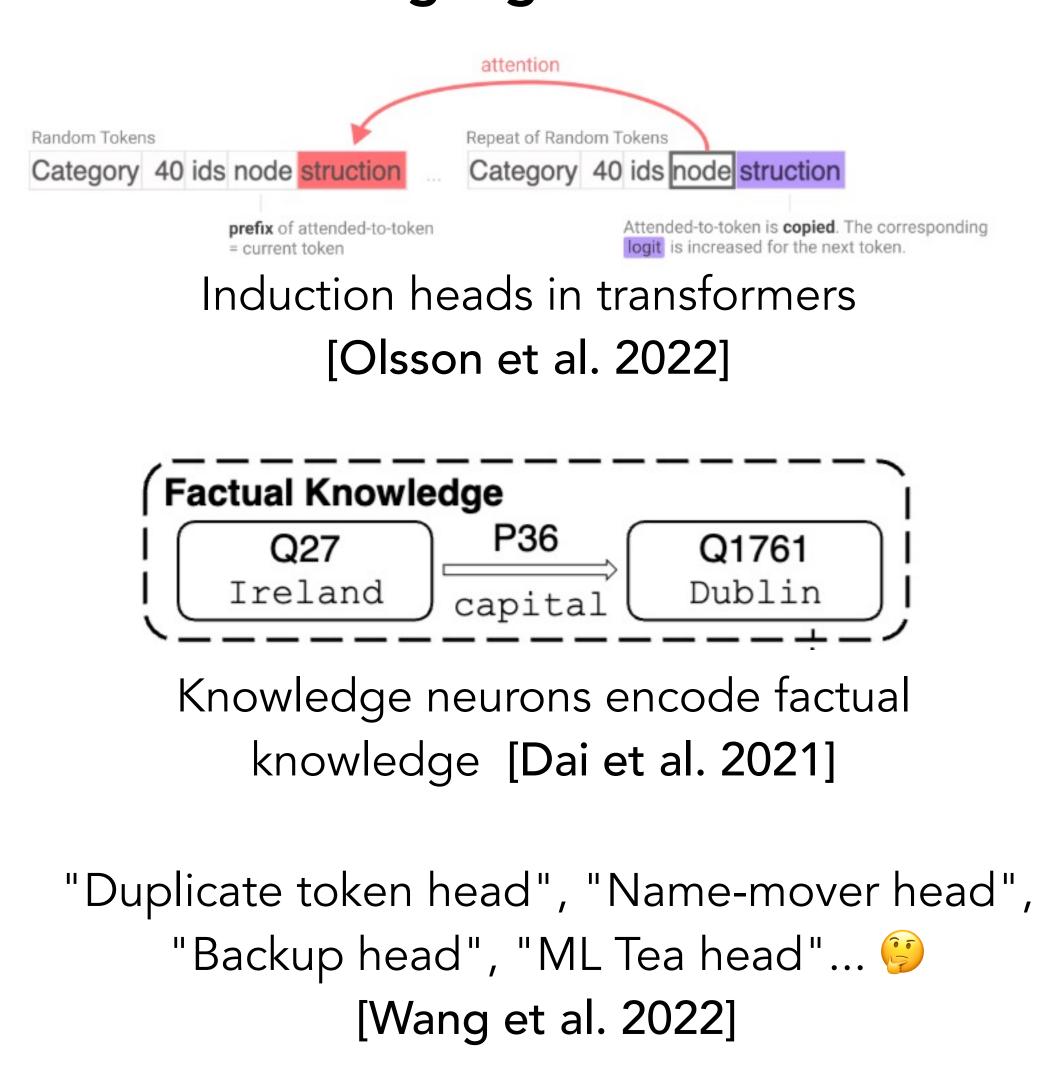
Background: Interpreting model components Vision models Language models

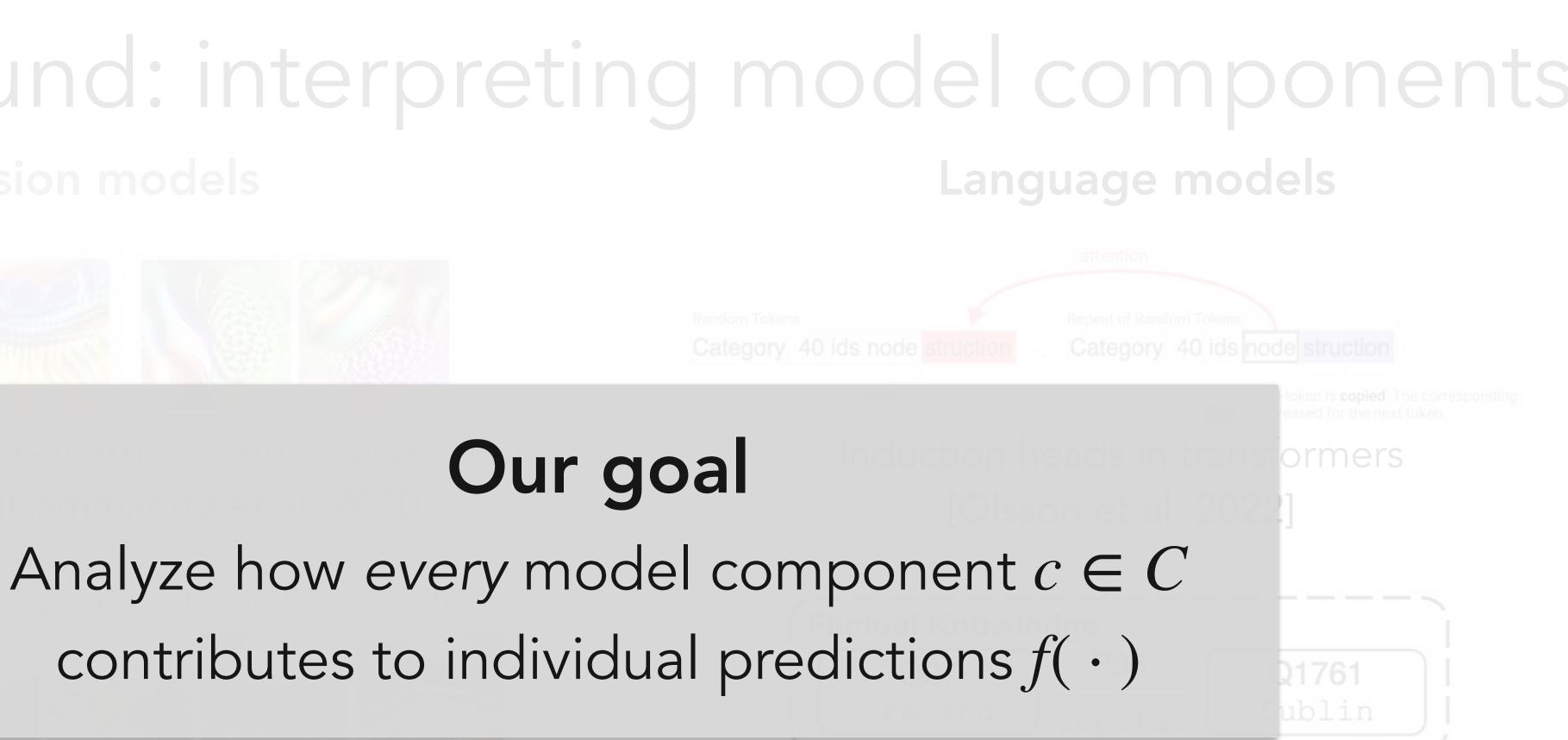
Convolution filters learn to detect curves and frequency [Cammarata et al. 2020]

unit 149 "mountain top" (acc lost: train 1.2% val 3.5%)

unit 242 "house" (acc lost: train 1.5% val 2.5%)

Convolution filters in deeper layers detect high-level visual concepts [Bau et al. 2020]





knowledge [Dai et al. 2021]

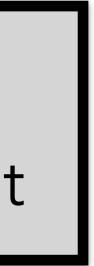
[Wang et al. 2022]

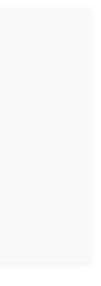
Component attribution framework Decompose any prediction into "contributions" from every model component

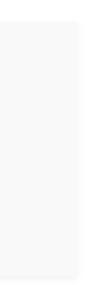
COAR: <u>Component</u> <u>Attribution</u> via <u>Regression</u> A general method for efficient and accurate component attribution

Our work

COAR-Edit: Model editing using component attributions Edit model behavior by ablating a targeted subset of components







The component attribution framework

Main idea

If we can "understand" how all model components shape a prediction

we should be able to estimate how predictions <u>change</u> in response to interventions to one or more model components

The component attribution framework

Main idea

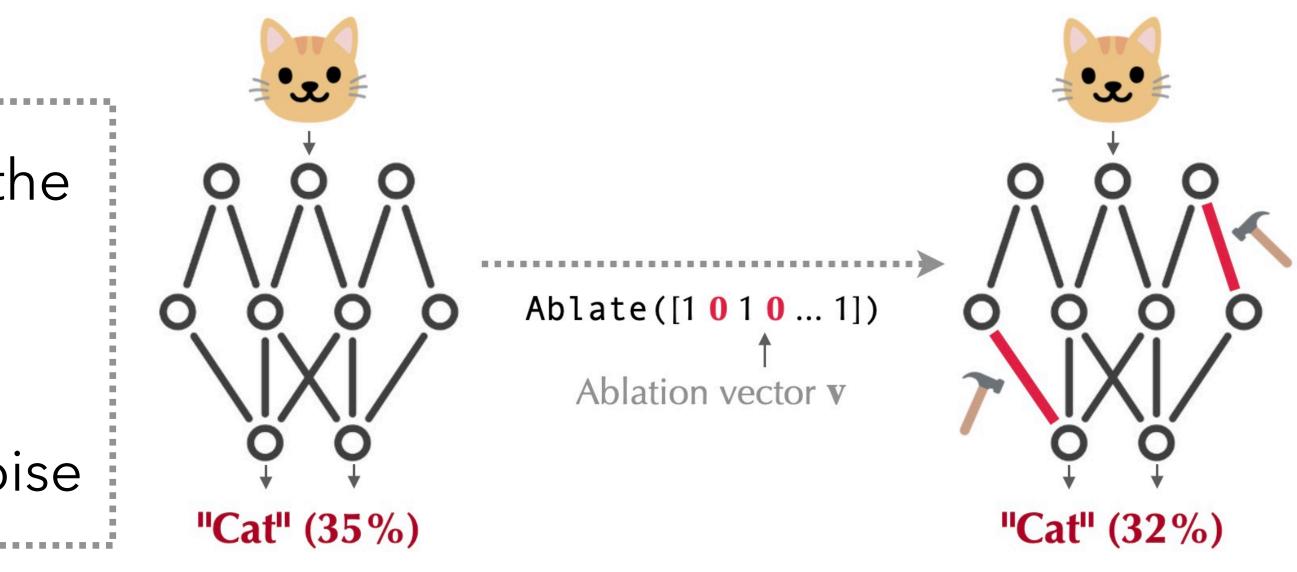
If we can "understand" how all model components shape a prediction,

we should be able to estimate how interventions to model components <u>change</u> model predictions

Component ablations as interventions

A component ablation intervenes on the parameters corresponding to one or more model components.

For instance, zeroing out or adding noise



The component attribution framework

Component ablations as interventions

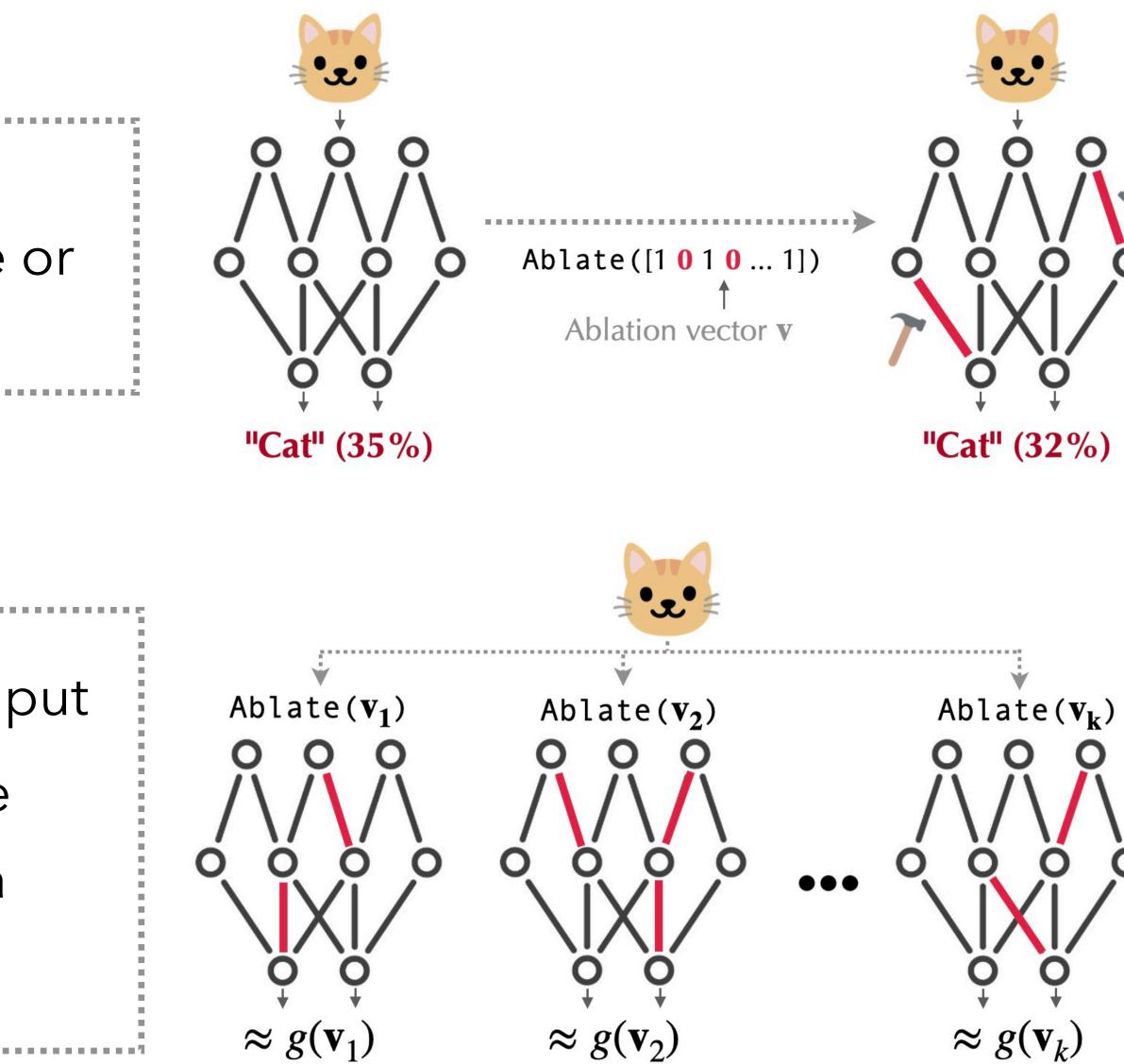
A **component ablation** intervenes on the *parameters* corresponding to one or

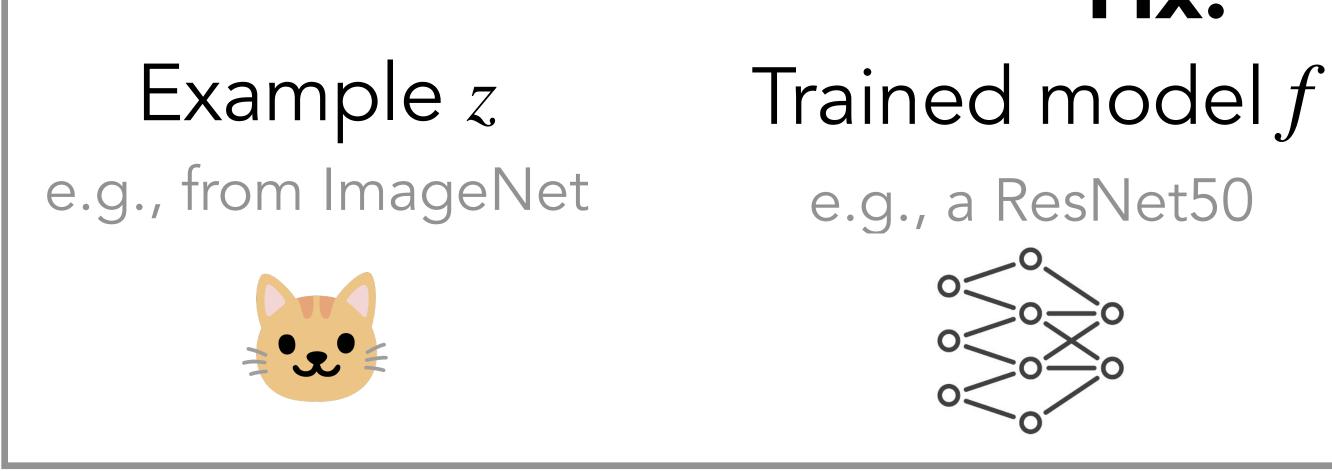
more model components.

Component attribution

A **component attribution** g takes as input

an ablation vector *v* and estimates the effect of the component ablation on a given model prediction.





For any component ablation $v \in \{0,1\}^{|C|}$

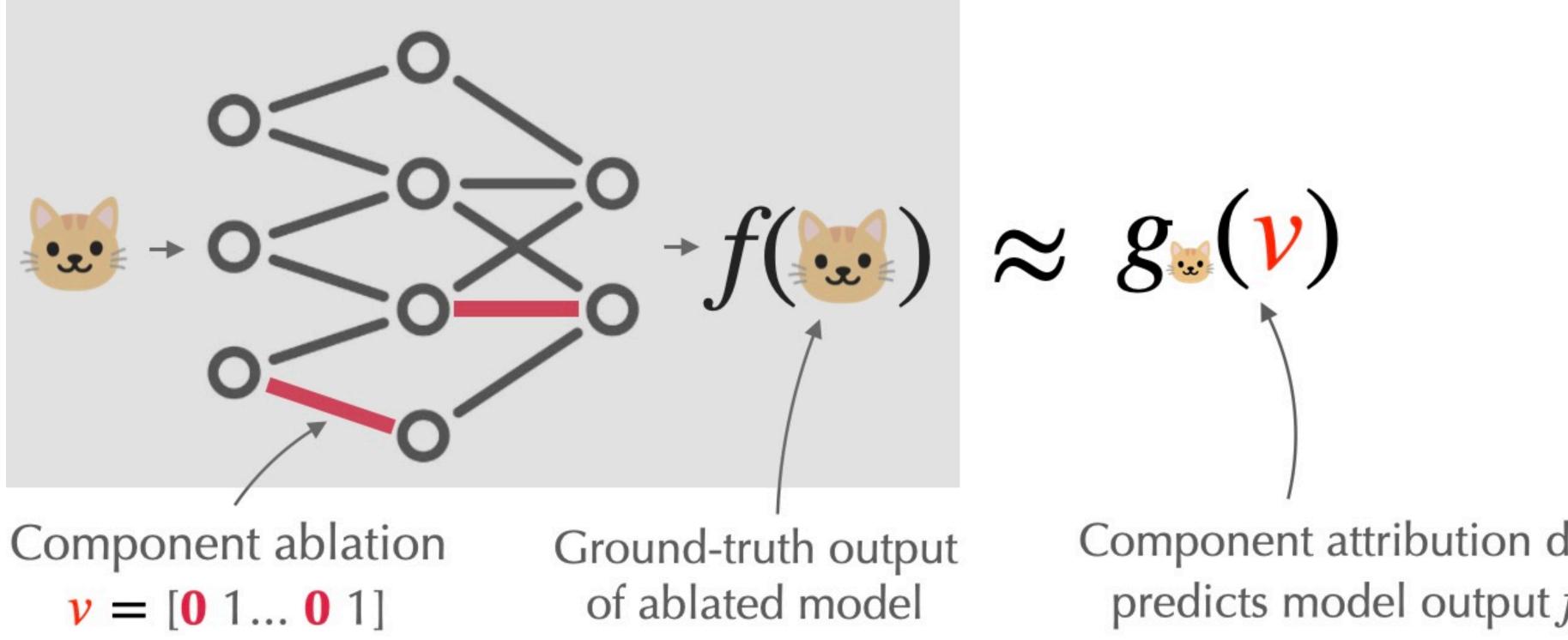
- 1. Using v, apply component ablation to the model f
- 2. Evaluate output of ablated model on example z to get f(z, v)

Goal: Given (any) component ablation v, estimate f(z, v) (i.e., without intervening)

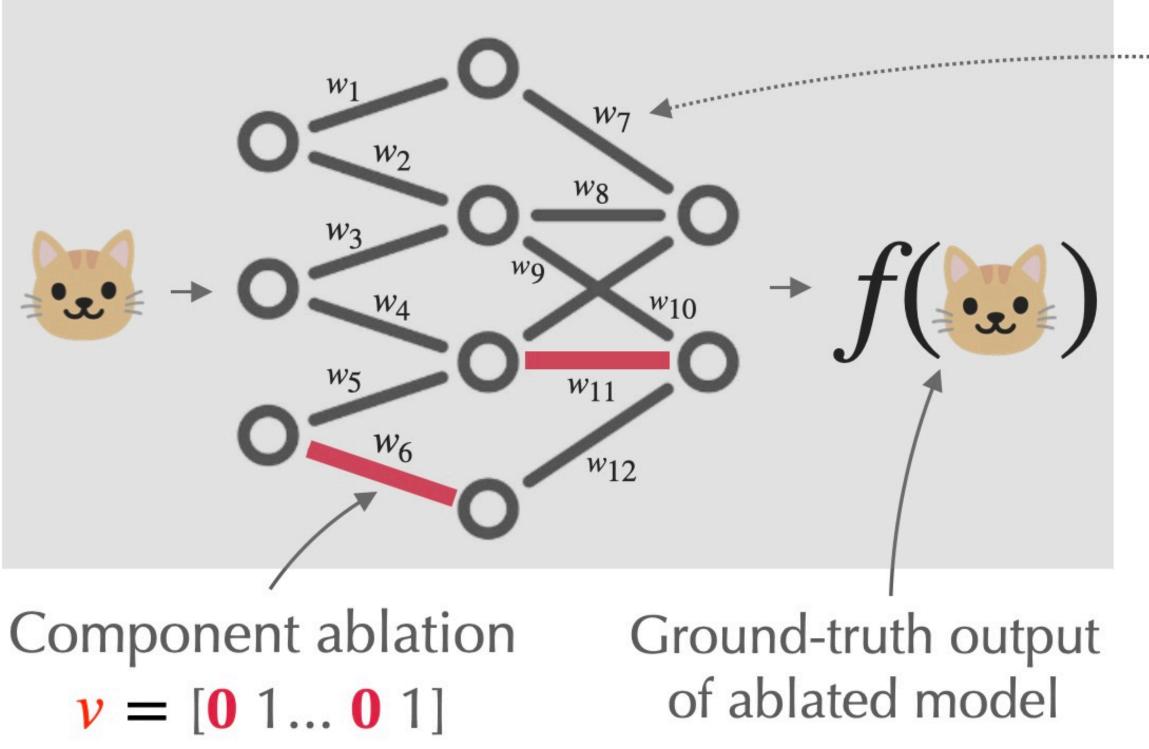
- Fix:

Set of components C e.g., conv filters in all layers

layer7.block3.conv[42]



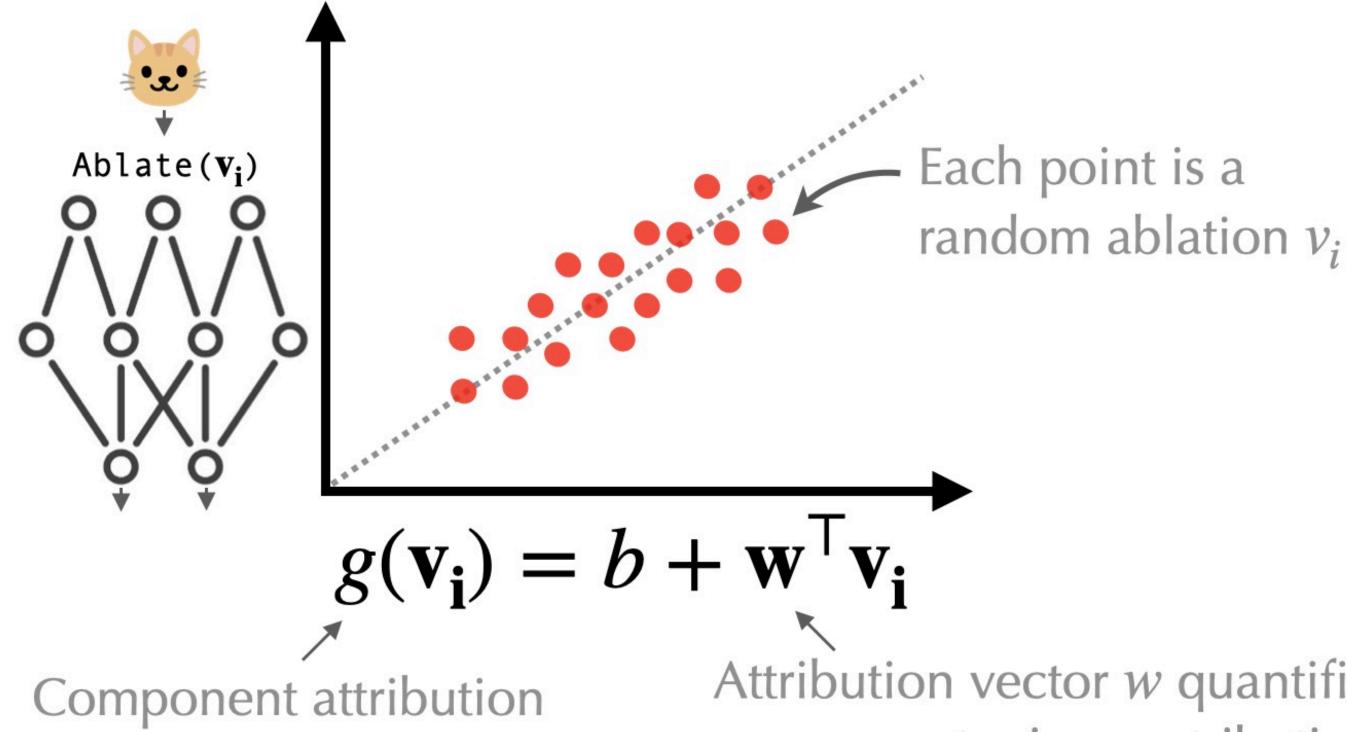
Component attribution directly predicts model output $f(\mathbf{w})$



Attribution scores w estimate component-wise contributions

 $\approx g_{\omega}(v) = \dot{v}^{\mathsf{T}}v + b$ Component attribution directly

predicts model output $f(\mathbf{w})$



Next: We want to estimate component attributions that accurately predict how component ablations change model predictions

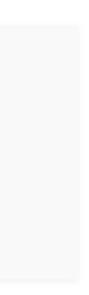
> Attribution vector w quantifies component-wise contributions

Component attribution framework Decompose any prediction into "contributions" from every model component

COAR: <u>Component Attribution via Regression</u> A general method for efficient and accurate component attribution

Our work

COAR-Edit: Model editing using component attributions Edit model behavior by ablating a targeted subset of components

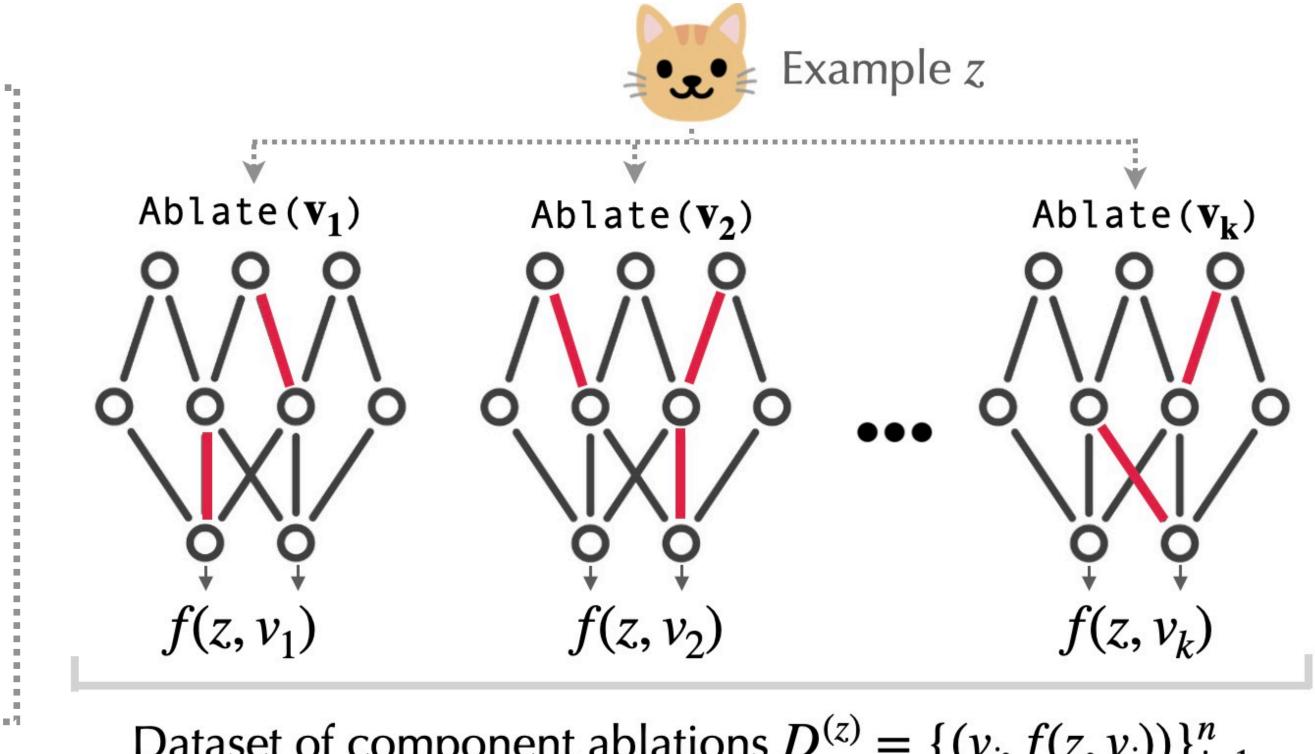


COAR: <u>Component Attribution via Regression</u>

Step 1/2

Construct a dataset of component ablations by ablating random subsets of components and recording both the ablations and the ablated model's outputs for each example of interest.

Cast component attribution into a supervised learning problem in two steps



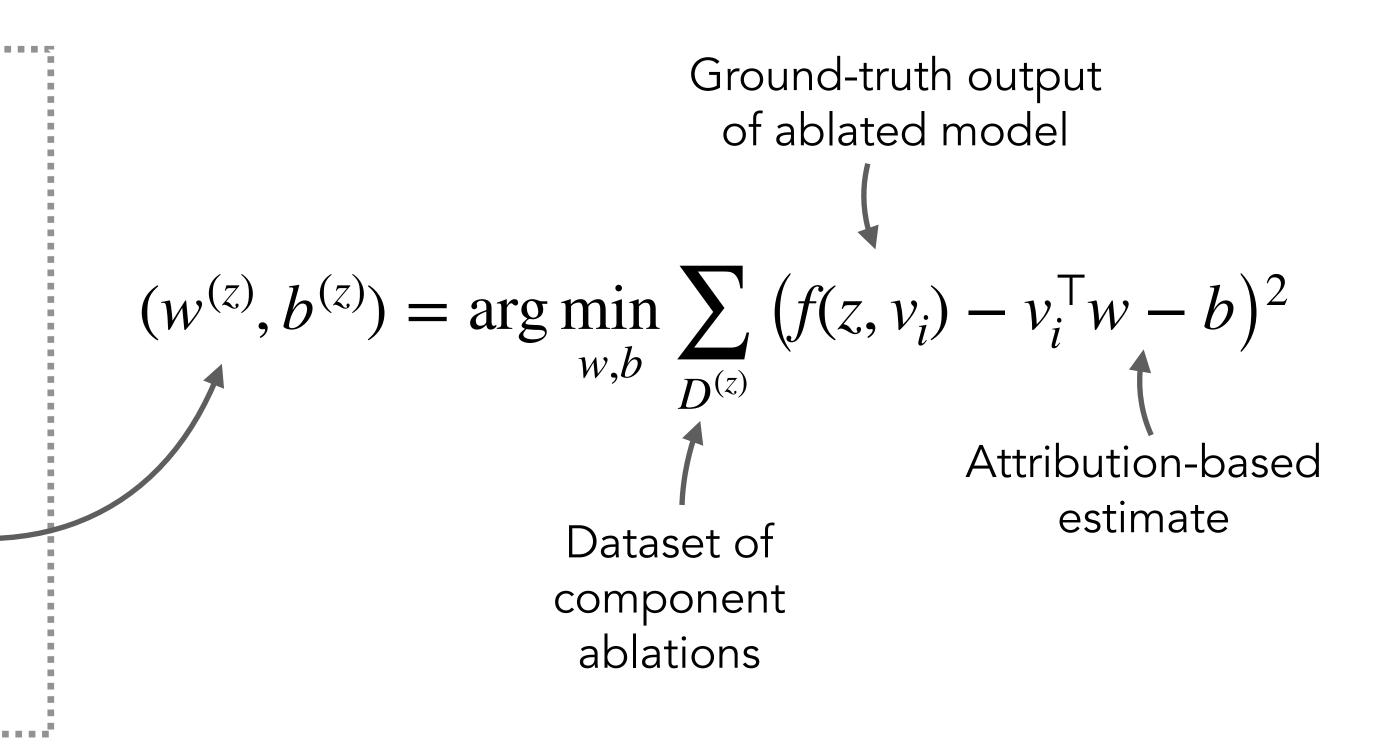
Dataset of component ablations $D^{(z)} = \{(v_i, f(z, v_i))\}_{i=1}^n$

COAR: <u>Component Attribution via Regression</u>

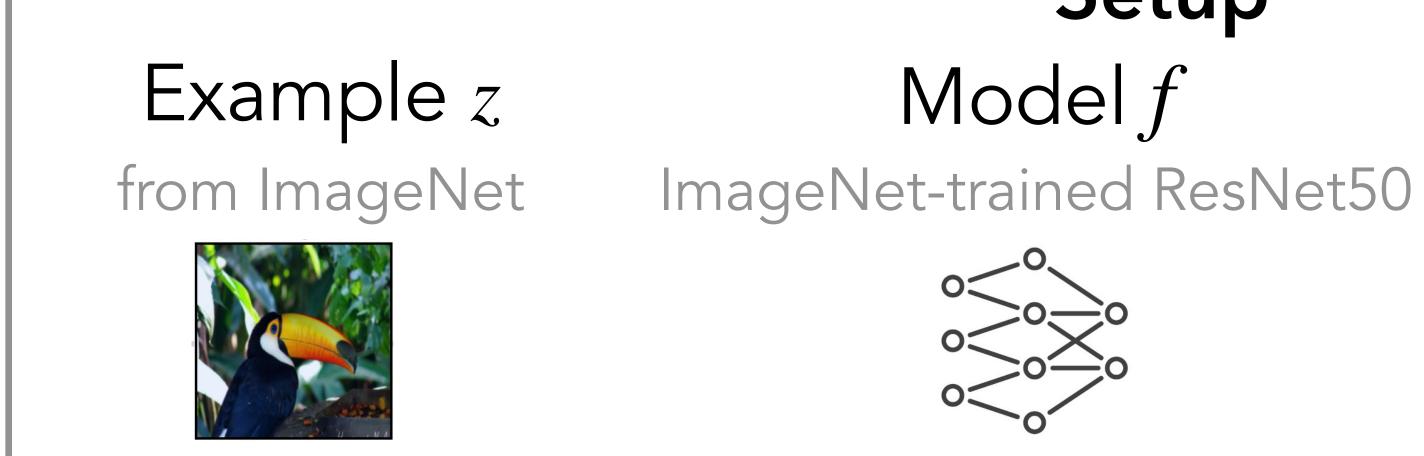
Cast component attribution into a supervised learning problem in two steps

Step 2/2

Fit a linear regression model that maps an ablation vector v_i to the ablated models' output $f(z, v_i)$. The weights (w, b) of this linear model serve as our component attribution $g^{(z)}(v) = w^{T}v + b$



COAR: Component Attribution via Regression



Evaluating component attributions $g^{(z)}$

- 1. Sample an (unseen) <u>random</u> ablation vector v

Does COAR learn accurate component attributions?

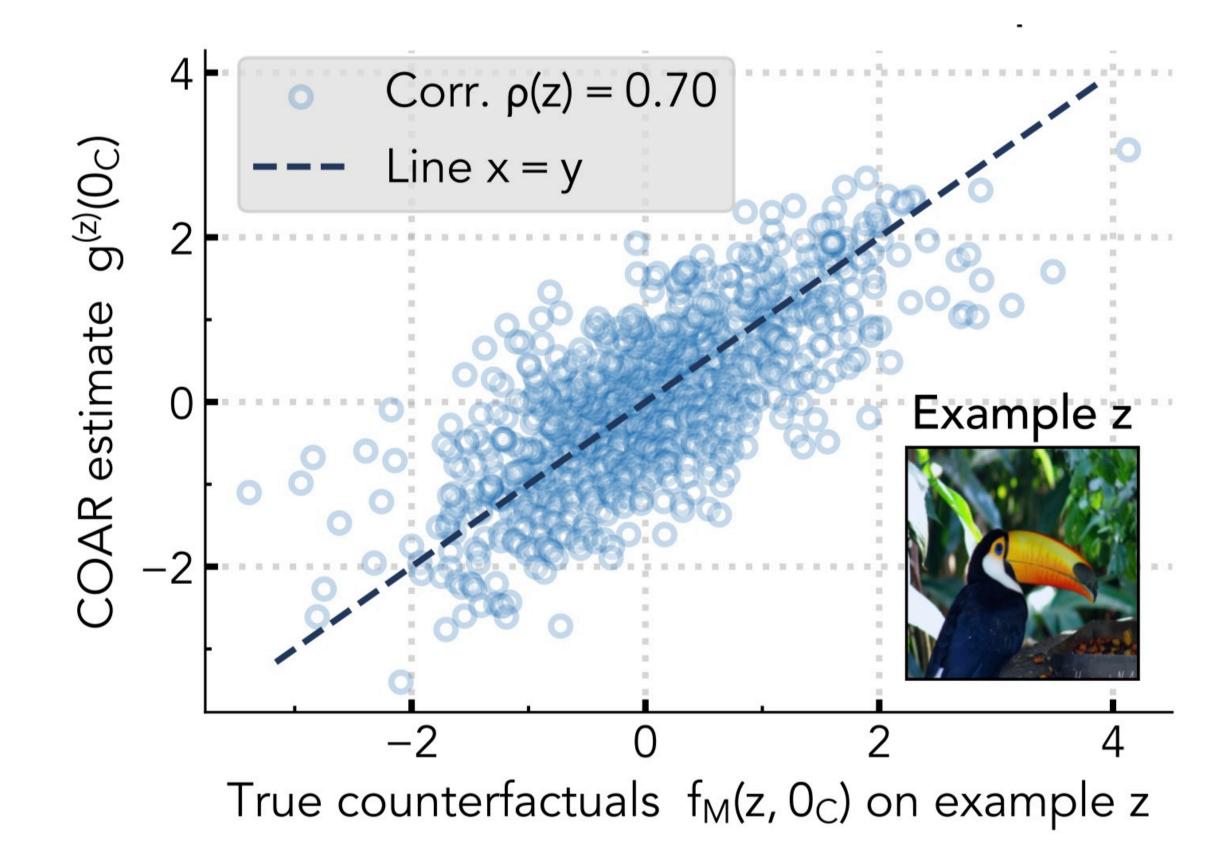
Setup

Components C 22,720 conv filters

layer*.block*.conv*

2. Check if the attribution-based estimate $g^{(z)}(z)$ predicts ground-truth output f(z, v)

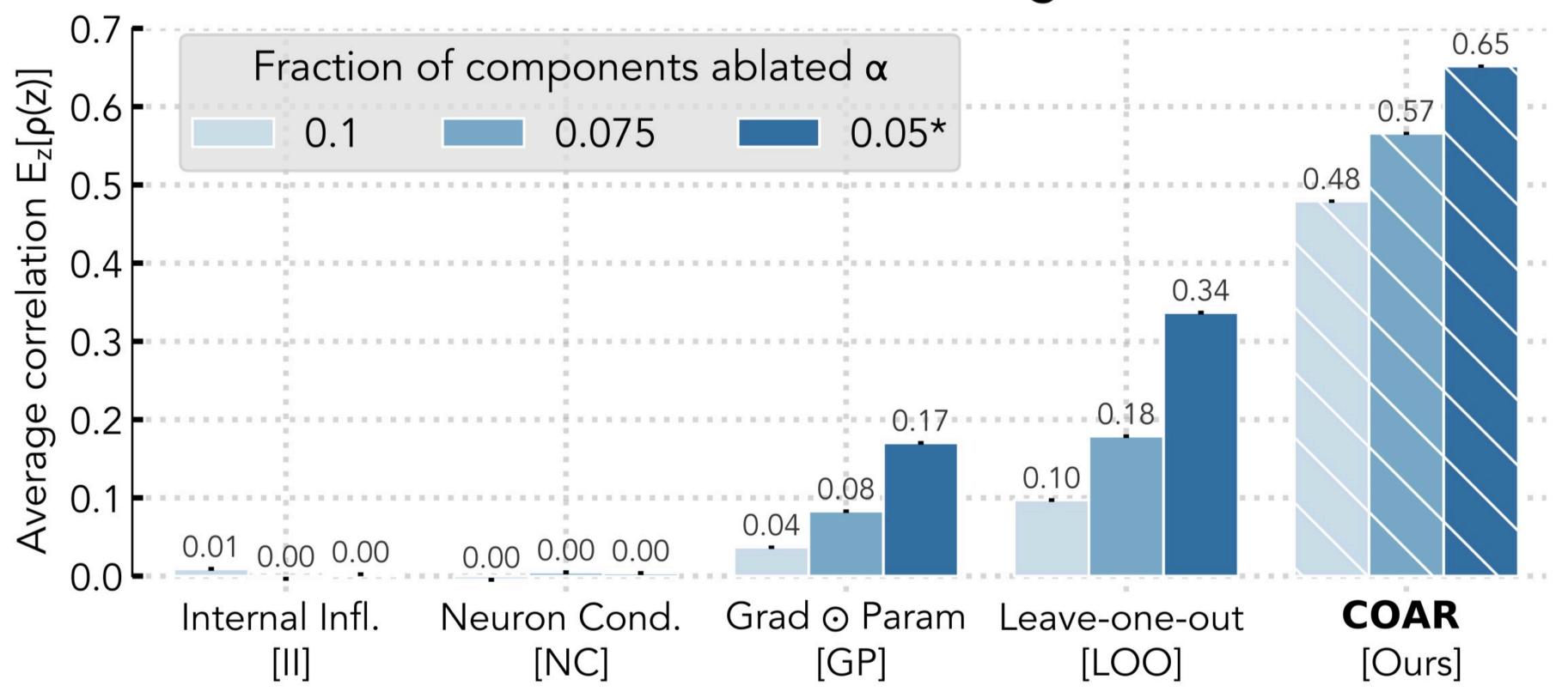
COAR: Component Attribution via Regression



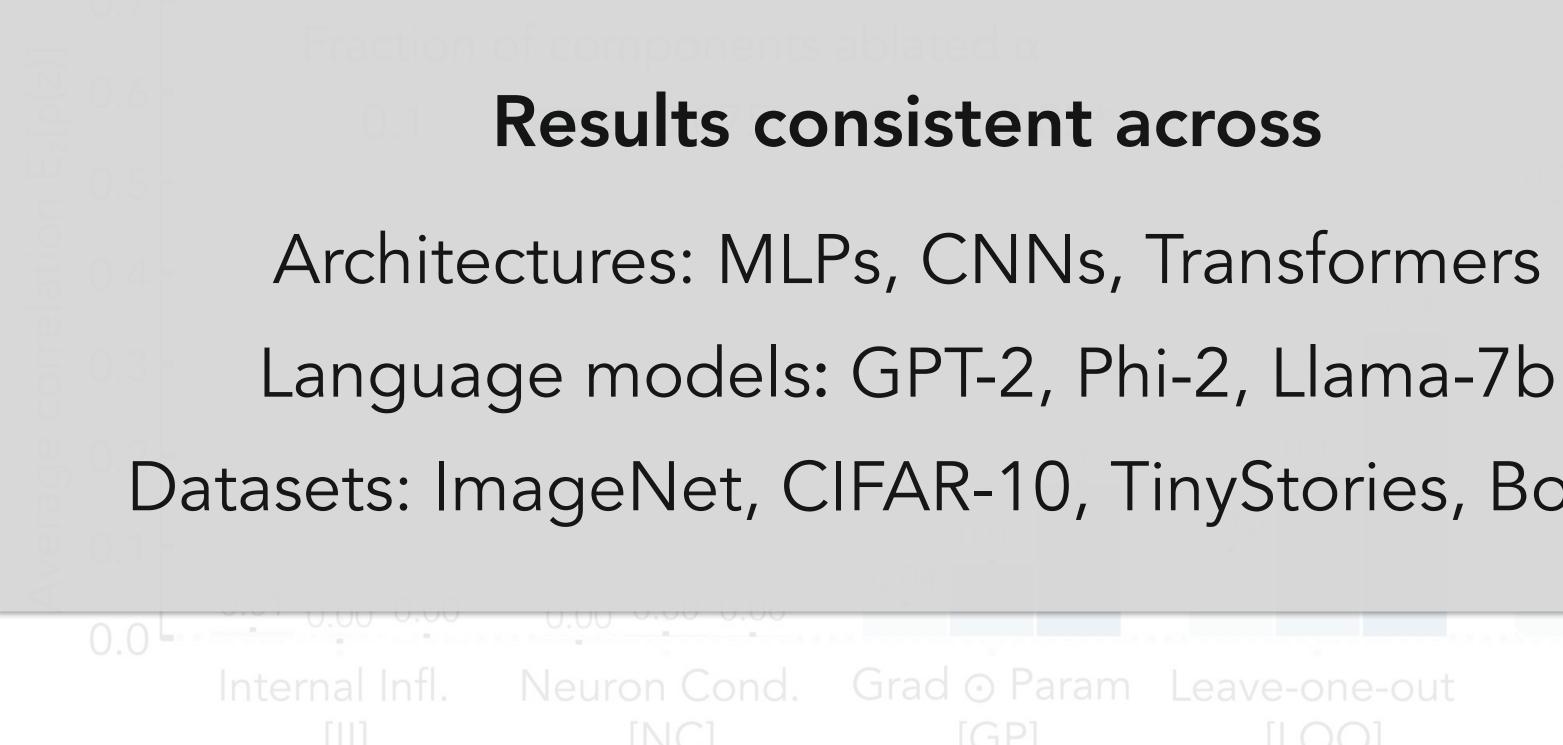
- Does COAR learn accurate component attributions?
 - ResNet-50 trained on ImageNet

COAR: Component Attribution via Regression

ResNet-50 trained on ImageNet



ResNet-50 trained on ImageNet



Results consistent across Architectures: MLPs, CNNs, Transformers

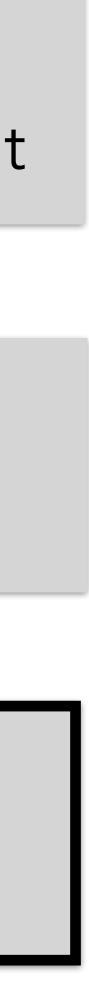
Datasets: ImageNet, CIFAR-10, TinyStories, BoolQ

Component attribution framework Decompose any prediction into "contributions" from every model component

COAR: <u>Component Attribution via Regression</u> A general method for efficient and accurate component attribution

COAR-Edit: Model editing using component attributions Edit model behavior by ablating a targeted subset of components

Our work



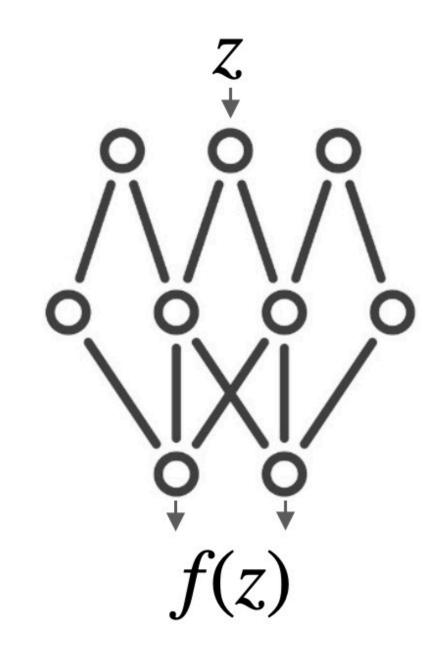
Component attribution asks

How would model outputs change if we were to ablate a subset of components?

Model editing inverts this to

Which components, when ablated, would change model outputs in a specific way?

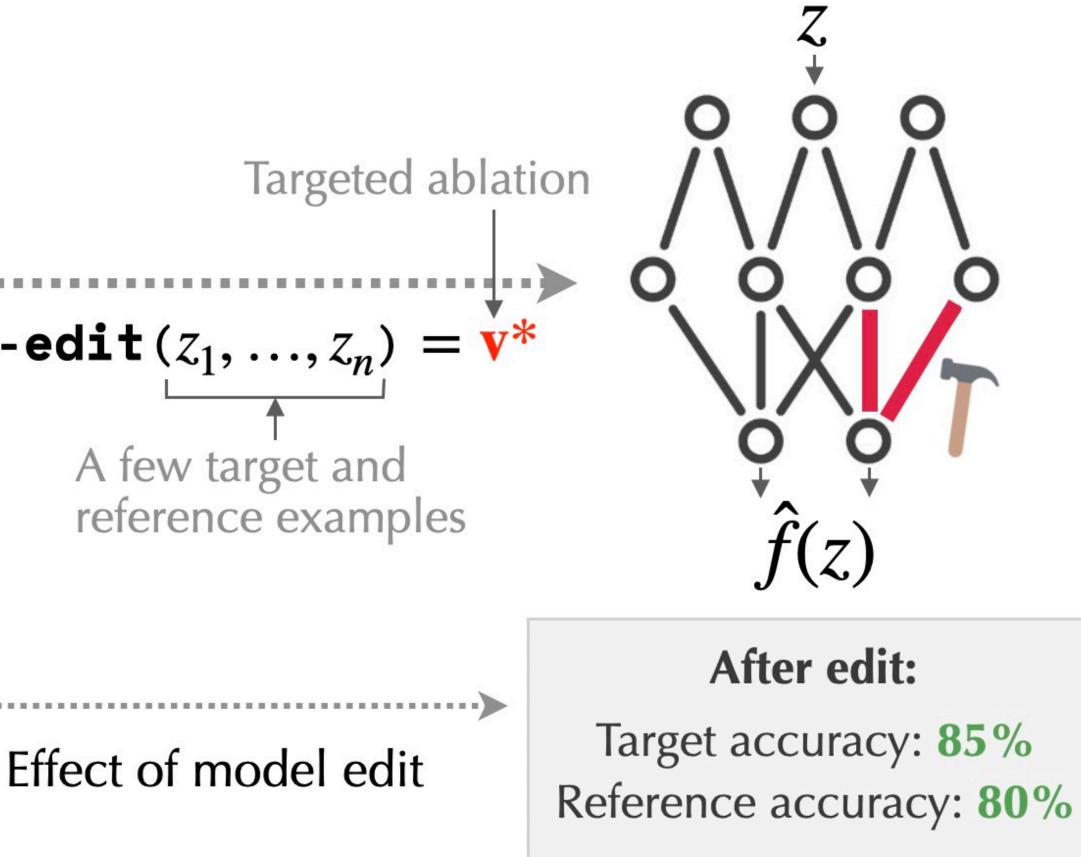
Goal: perform a model edit that improves performance on target examples without degrading performance on reference examples



COAR-edit $(z_1, ..., z_n)$

Before edit:

Target accuracy: **60%** Reference accuracy: **80%**





Main idea

Sample-efficient 🔽 No additional training needed 🚺

Use COAR attributions to identify model components that, when ablated, change model behavior in a targeted manner

Step 1/3 Compute COAR attributions for target and reference examples

Step 2/3 For every component, quantify its "importance" to target examples relative to reference examples with a simple t-test (null: target ~ reference)

Step 3/3

Ablate the bottom-k components with the lowest test statistics to improve model performance on the target examples.

Case study #1: Improving group robustness

Problem

1. Models latch on to spurious correlations in the training dataset

2. At test time, models performance sucks when spurious correlation is absent

Common training examples

Waterbirds

y: waterbird a: water background

y: landbird a: land background

CelebA

y: blond hair a: female

y: dark hair a: male

[Group robustness benchmarks from Sagawa et al. 2020]

Test examples

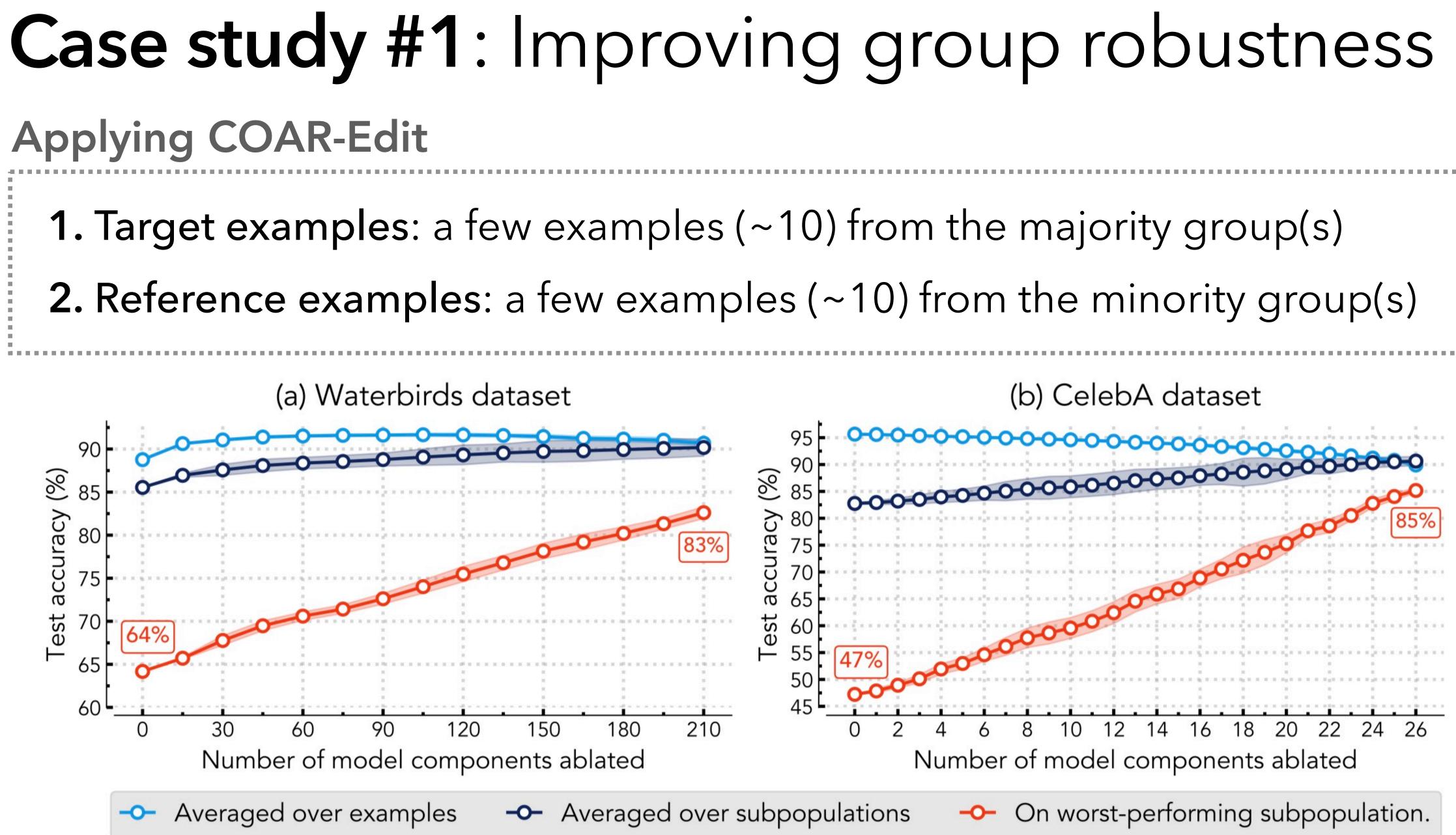
y: waterbird

a: land

background

Y: blond hair
a: male
Image: Second s

nt



Case study #2: Robustness to typographic attacks

Problem

Zero-shot CLIP classifiers are sensitive to typographic attacks [Goh et al. 2021]

Evaluating a CLIP ViT-B/16 model on images w/ and w/o attacks

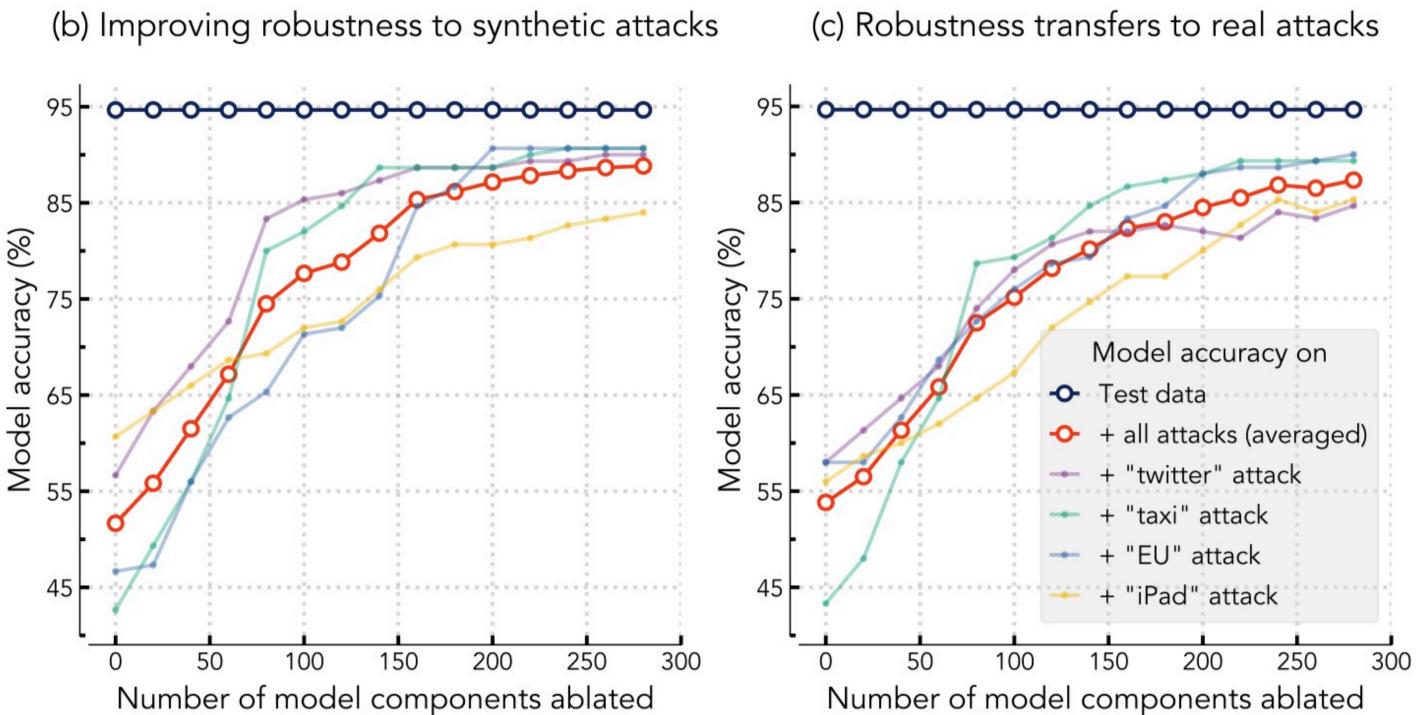
(a) Effect of attacks on model predictions Test data

+ synthetic typographic attacks

+ real typographic attacks

Case study #2: Robustness to typographic attacks **Applying COAR-Edit**

1. Target examples: a few examples (~10) with synthetic typographic attacks **2. Reference examples:** a few examples (~10) without typographic attacks



Summary

- \rightarrow Decompose predictions into contributions from every model component → How? Use **COAR** to learn component attributions
- \rightarrow Edit model behavior at the level of examples, subpopulations, and concepts → How? Use **COAR-Edit** to identify and ablate a targeted set of model components

Check out our paper for more findings! https://arxiv.org/abs/2404.11534

Decomposing and Editing Predictions by Modeling Model Computation

