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Why study model predictions?
Tinker your ML pipeline 💻 Try to get SOTA results 🔢

Repeat 



Why study model predictions?

Core issue: We don't understand how models internally turn examples into predictions

🤔



Models as computation graphs

Example z Model output f(z)

Any metric that quantifies “correctness” 
e.g., cross-entropy loss, correct-class confidence., etc
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Model  as a computation graph over model components f

A set of model components C



Models as computation graphs

Example z Model output f(z)

Model  as a computation graph over model components f

Convolution filters in ResNet models  

Attention heads & MLPs in Transformers 

Weight vectors in MLPs  

Coefficients in linear models

Examples of model components in common model architectures 

A set of model components C



Models as computation graphs

Example z Model output f(z)

Model  as a computation graph over model components f

Model components 

Convolution filters in ResNet models  

Attention heads & MLPs in Transformers 

Weight vectors in MLPs  

Parameters in linear models

Examples

High-level question 

Can we somehow understand how model components 
collectively turn examples into predictions?  



Convolution filters learn to detect curves and 
frequency [Cammarata et al. 2020]

Background: interpreting model components

Convolution filters in deeper layers detect 
high-level concepts [Bau et al. 2020]

Vision models



Convolution filters learn to detect curves and 
frequency [Cammarata et al. 2020]

Background: Interpreting model components

Convolution filters in deeper layers detect 
high-level visual concepts [Bau et al. 2020]

Language models

Induction heads in transformers  
[Olsson et al. 2022]

Knowledge neurons encode factual 
knowledge  [Dai et al. 2021]

"Duplicate token head", "Name-mover head", 
"Backup head", "ML Tea head"... 🤔  

[Wang et al. 2022] 
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Convolution filters learn to detect curves and 
frequency [Cammarata et al. 2020]

Background: interpreting model components

Convolution filters in deeper layers detect 
high-level visual concepts [Bau et al. 2020]

Language models

Induction heads in transformers  
[Olsson et al. 2022]

Knowledge neurons encode factual 
knowledge  [Dai et al. 2021]

"Duplicate token head", "Name-mover head", 
"Backup head", "ML Tea head"... 🤔  

[Wang et al. 2022] 

Vision models

Our goal 
Analyze how every model component   

contributes to individual predictions 
c ∈ C
f( ⋅ )



Our work
Component attribution framework  

Decompose any prediction into "contributions" from every model component

COAR: Component Attribution via Regression 
A general method for efficient and accurate component attribution

COAR-Edit: Model editing using component attributions 
Edit model behavior by ablating a targeted subset of components



The component attribution framework 
Main idea

If we can “understand” how all model components shape a prediction

we should be able to estimate how predictions change in response  
to interventions to one or more model components 



The component attribution framework 
Main idea

If we can “understand” how all model components shape a prediction,

we should be able to estimate how interventions to model components 
change model predictions

Component ablations as interventions

A component ablation intervenes on the 
parameters corresponding to one or 
more model components.  

For instance, zeroing out or adding noise



The component attribution framework 
Component ablations as interventions

A component ablation intervenes on 
the parameters corresponding to one or 
more model components. 

Component attribution

A component attribution  takes as input 
an ablation vector  and estimates the 
effect of the component ablation on a 
given model prediction.

g
v



For any component ablation   

1. Using , apply component ablation to the model  

2. Evaluate output of ablated model on example  to get    

Goal: Given (any) component ablation , estimate  (i.e., without intervening)

v ∈ {0,1}|C|

v f

z f(z, v)

v f(z, v)

Formalizing component attribution
Fix:

Example z Trained model f
e.g., a ResNet50

Set of components  C
e.g., from ImageNet e.g., conv filters in all layers

layer7.block3.conv[42]



Formalizing component attribution



Formalizing component attribution



Formalizing component attribution
Next: We want to estimate component attributions that accurately predict  

how component ablations change model predictions



Our work
Component attribution framework  

Decompose any prediction into "contributions" from every model component

COAR: Component Attribution via Regression 
A general method for efficient and accurate component attribution

COAR-Edit: Model editing using component attributions 
Edit model behavior by ablating a targeted subset of components



COAR: Component Attribution via Regression
Cast component attribution into a supervised learning problem in two steps 

Construct a dataset of component 
ablations by ablating random 
subsets of components and 
recording both the ablations and 
the ablated model's outputs for 
each example of interest.

Step 1/2



COAR: Component Attribution via Regression
Cast component attribution into a supervised learning problem in two steps 

Fit a linear regression model that 
maps an ablation vector  to the 
ablated models' output  . 
The  weights ( , ) of this linear 
model serve as our component 
attribution  

vi

f(z, vi)
w b

g(z)(v) = w⊤v + b

Step 2/2

(w(z), b(z)) = arg min
w,b ∑

D(z)
(f(z, vi) − v⊤

i w − b)2

Dataset of 
component 
ablations

Attribution-based 
estimate

Ground-truth output  
of ablated model



COAR: Component Attribution via Regression
Does COAR learn accurate component attributions?

Setup
Example z Model f Components  C

from ImageNet 22,720 conv filters

layer*.block*.conv*

ImageNet-trained ResNet50

Evaluating component attributions  

1. Sample an (unseen) random ablation vector  

2. Check if the attribution-based estimate  predicts ground-truth output  

g(z)

v

g(z)(z) f(z, v)



COAR: Component Attribution via Regression
Does COAR learn accurate component attributions?



COAR: Component Attribution via Regression



COAR: Component Attribution via Regression

Results consistent across  

Architectures: MLPs, CNNs, Transformers 

Language models: GPT-2, Phi-2, Llama-7b 

Datasets: ImageNet, CIFAR-10, TinyStories, BoolQ



Our work
Component attribution framework  

Decompose any prediction into "contributions" from every model component

COAR: Component Attribution via Regression 
A general method for efficient and accurate component attribution

COAR-Edit: Model editing using component attributions 
Edit model behavior by ablating a targeted subset of components



COAR-Edit: Model editing using COAR attributions

Component attribution asks

How would model outputs change if we were to ablate a subset of components?

Model editing inverts this to

Which components, when ablated, would change model outputs in a specific way?



COAR-Edit: Model editing using COAR attributions
Goal: perform a model edit that improves performance on target examples 

without degrading performance on reference examples



Use COAR attributions to identify model components that,  
when ablated,  change model behavior in a targeted manner

COAR-Edit: Model editing using COAR attributions

Main idea 

No additional training needed ✅ Sample-efficient ✅



Ablate the bottom-  components with the lowest test statistics to improve 
model performance on the target examples.

k

For every component, quantify its "importance" to target examples  
relative to reference examples with a simple t-test (null: target ~ reference)

Compute COAR attributions for target and reference examples

COAR-Edit: Model editing using COAR attributions

Step 1/3

Step 2/3

Step 3/3



Case study #1: Improving group robustness

[Group robustness benchmarks from Sagawa et al. 2020]

1. Models latch on to spurious correlations in the training dataset  
2. At test time, models performance sucks when spurious correlation is absent

Problem

Under-performing 
minority groups



Case study #1: Improving group robustness

1. Target examples: a few examples (~10) from the majority group(s)  
2. Reference examples: a few examples (~10) from the minority group(s)

Applying COAR-Edit



Case study #2: Robustness to typographic attacks

Zero-shot CLIP classifiers are 
sensitive to typographic attacks 
[Goh et al. 2021]

Problem

Evaluating a CLIP ViT-B/16 model 
on images w/ and w/o attacks



Case study #2: Robustness to typographic attacks

1. Target examples: a few examples (~10) with synthetic typographic attacks 
2. Reference examples: a few examples (~10) without typographic attacks 

Applying COAR-Edit



Decomposing and Editing Predictions by Modeling Model Computation

Summary

→ Decompose predictions into contributions from every model component 

→ Edit model behavior at the level of examples, subpopulations, and concepts 

→ How? Use COAR to learn component attributions  

@harshays_

Check out our paper for more findings! 
https://arxiv.org/abs/2404.11534

→ How? Use COAR-Edit to identify and ablate a targeted set of model components 


