
Harshay Shah, Andrew Ilyas, Aleksander Mądry

Decomposing and Editing Predictions
by Modeling Model Computation

gradientscience.org/modelcomponents

https://arxiv.org/abs/2404.11534

ICML 2024

Why study model predictions?
Tinker your ML pipeline 💻 Try to get SOTA results 🔢

Repeat

Why study model predictions?

Core issue: We don't understand how models internally turn examples into predictions

🤔

Models as computation graphs

Example z Model output f(z)

Any metric that quantifies “correctness”
e.g., cross-entropy loss, correct-class confidence., etc

Models as computation graphs

Example z Model output f(z)

Model as a computation graph over model components f

A set of model components C

Models as computation graphs

Example z Model output f(z)

Model as a computation graph over model components f

Convolution filters in ResNet models

Attention heads & MLPs in Transformers

Weight vectors in MLPs

Coefficients in linear models

Examples of model components in common model architectures

A set of model components C

Models as computation graphs

Example z Model output f(z)

Model as a computation graph over model components f

Model components

Convolution filters in ResNet models

Attention heads & MLPs in Transformers

Weight vectors in MLPs

Parameters in linear models

Examples

High-level question

Can we somehow understand how model components
collectively turn examples into predictions?

Convolution filters learn to detect curves and
frequency [Cammarata et al. 2020]

Background: interpreting model components

Convolution filters in deeper layers detect
high-level concepts [Bau et al. 2020]

Vision models

Convolution filters learn to detect curves and
frequency [Cammarata et al. 2020]

Background: Interpreting model components

Convolution filters in deeper layers detect
high-level visual concepts [Bau et al. 2020]

Language models

Induction heads in transformers
[Olsson et al. 2022]

Knowledge neurons encode factual
knowledge [Dai et al. 2021]

"Duplicate token head", "Name-mover head",
"Backup head", "ML Tea head"... 🤔

[Wang et al. 2022]

Vision models

Convolution filters learn to detect curves and
frequency [Cammarata et al. 2020]

Background: interpreting model components

Convolution filters in deeper layers detect
high-level visual concepts [Bau et al. 2020]

Language models

Induction heads in transformers
[Olsson et al. 2022]

Knowledge neurons encode factual
knowledge [Dai et al. 2021]

"Duplicate token head", "Name-mover head",
"Backup head", "ML Tea head"... 🤔

[Wang et al. 2022]

Vision models

Our goal
Analyze how every model component

contributes to individual predictions
c ∈ C
f(⋅)

Our work
Component attribution framework

Decompose any prediction into "contributions" from every model component

COAR: Component Attribution via Regression
A general method for efficient and accurate component attribution

COAR-Edit: Model editing using component attributions
Edit model behavior by ablating a targeted subset of components

The component attribution framework
Main idea

If we can “understand” how all model components shape a prediction

we should be able to estimate how predictions change in response
to interventions to one or more model components

The component attribution framework
Main idea

If we can “understand” how all model components shape a prediction,

we should be able to estimate how interventions to model components
change model predictions

Component ablations as interventions

A component ablation intervenes on the
parameters corresponding to one or
more model components.

For instance, zeroing out or adding noise

The component attribution framework
Component ablations as interventions

A component ablation intervenes on
the parameters corresponding to one or
more model components.

Component attribution

A component attribution takes as input
an ablation vector and estimates the
effect of the component ablation on a
given model prediction.

g
v

For any component ablation

1. Using , apply component ablation to the model

2. Evaluate output of ablated model on example to get

Goal: Given (any) component ablation , estimate (i.e., without intervening)

v ∈ {0,1}|C|

v f

z f(z, v)

v f(z, v)

Formalizing component attribution
Fix:

Example z Trained model f
e.g., a ResNet50

Set of components C
e.g., from ImageNet e.g., conv filters in all layers

layer7.block3.conv[42]

Formalizing component attribution

Formalizing component attribution

Formalizing component attribution
Next: We want to estimate component attributions that accurately predict

how component ablations change model predictions

Our work
Component attribution framework

Decompose any prediction into "contributions" from every model component

COAR: Component Attribution via Regression
A general method for efficient and accurate component attribution

COAR-Edit: Model editing using component attributions
Edit model behavior by ablating a targeted subset of components

COAR: Component Attribution via Regression
Cast component attribution into a supervised learning problem in two steps

Construct a dataset of component
ablations by ablating random
subsets of components and
recording both the ablations and
the ablated model's outputs for
each example of interest.

Step 1/2

COAR: Component Attribution via Regression
Cast component attribution into a supervised learning problem in two steps

Fit a linear regression model that
maps an ablation vector to the
ablated models' output .
The weights (,) of this linear
model serve as our component
attribution

vi

f(z, vi)
w b

g(z)(v) = w⊤v + b

Step 2/2

(w(z), b(z)) = arg min
w,b ∑

D(z)
(f(z, vi) − v⊤

i w − b)2

Dataset of
component
ablations

Attribution-based
estimate

Ground-truth output
of ablated model

COAR: Component Attribution via Regression
Does COAR learn accurate component attributions?

Setup
Example z Model f Components C

from ImageNet 22,720 conv filters

layer*.block*.conv*

ImageNet-trained ResNet50

Evaluating component attributions

1. Sample an (unseen) random ablation vector

2. Check if the attribution-based estimate predicts ground-truth output

g(z)

v

g(z)(z) f(z, v)

COAR: Component Attribution via Regression
Does COAR learn accurate component attributions?

COAR: Component Attribution via Regression

COAR: Component Attribution via Regression

Results consistent across

Architectures: MLPs, CNNs, Transformers

Language models: GPT-2, Phi-2, Llama-7b

Datasets: ImageNet, CIFAR-10, TinyStories, BoolQ

Our work
Component attribution framework

Decompose any prediction into "contributions" from every model component

COAR: Component Attribution via Regression
A general method for efficient and accurate component attribution

COAR-Edit: Model editing using component attributions
Edit model behavior by ablating a targeted subset of components

COAR-Edit: Model editing using COAR attributions

Component attribution asks

How would model outputs change if we were to ablate a subset of components?

Model editing inverts this to

Which components, when ablated, would change model outputs in a specific way?

COAR-Edit: Model editing using COAR attributions
Goal: perform a model edit that improves performance on target examples

without degrading performance on reference examples

Use COAR attributions to identify model components that,
when ablated, change model behavior in a targeted manner

COAR-Edit: Model editing using COAR attributions

Main idea

No additional training needed ✅ Sample-efficient ✅

Ablate the bottom- components with the lowest test statistics to improve
model performance on the target examples.

k

For every component, quantify its "importance" to target examples
relative to reference examples with a simple t-test (null: target ~ reference)

Compute COAR attributions for target and reference examples

COAR-Edit: Model editing using COAR attributions

Step 1/3

Step 2/3

Step 3/3

Case study #1: Improving group robustness

[Group robustness benchmarks from Sagawa et al. 2020]

1. Models latch on to spurious correlations in the training dataset
2. At test time, models performance sucks when spurious correlation is absent

Problem

Under-performing
minority groups

Case study #1: Improving group robustness

1. Target examples: a few examples (~10) from the majority group(s)
2. Reference examples: a few examples (~10) from the minority group(s)

Applying COAR-Edit

Case study #2: Robustness to typographic attacks

Zero-shot CLIP classifiers are
sensitive to typographic attacks
[Goh et al. 2021]

Problem

Evaluating a CLIP ViT-B/16 model
on images w/ and w/o attacks

Case study #2: Robustness to typographic attacks

1. Target examples: a few examples (~10) with synthetic typographic attacks
2. Reference examples: a few examples (~10) without typographic attacks

Applying COAR-Edit

Decomposing and Editing Predictions by Modeling Model Computation

Summary

→ Decompose predictions into contributions from every model component

→ Edit model behavior at the level of examples, subpopulations, and concepts

→ How? Use COAR to learn component attributions

@harshays_

Check out our paper for more findings!
https://arxiv.org/abs/2404.11534

→ How? Use COAR-Edit to identify and ablate a targeted set of model components

