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Multi-modal learning: success stories

Usage of multiple modalities has shown success in various applications
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Multi-modal learning: when More Isn't Better ©

obtain better performance in many use-cases
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When multi-modal learning isn’t better ©

Multi-modal learning fails to solve the task in many scenarios
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Multi-modal learning fails to solve the task in many scenarios

what sport field is in the background?

® The field in the background is a tennis court. The surface is painted with green and red sections,
typical of many tennis court designs, and the player is holding a racket, indicating this is a tennis

match or practice session.

174 do you see any soccer field in the image?

There isn't a visible soccer field in this image. The court shown in the image has characteristics of
a tennis court, as mentioned, with specific colored surfaces and line markings typical for tennis
rather than soccer. The fence around the court and the player with a racket further indicate that

this is likely a tennis setting, not a soccer field.
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Multi-modal learning fails to solve the task in many scenarios

How many wheels can you see in the image?

&) In the image, only two wheels of the car are visible on the side facing the viewer. The wheels on

the opposite side are not visible from this angle.

I O POV

m How many wheels can you see in the image?
:

m Draft 2

There are two wheels Based on the image, | can
visible in the image. see two wheels.

There are two wheels visible in the image.
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Draft 3

There are two wheels
visible in the image.
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Uncover underlying factor for
these discrepancies
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Introduce 12M2: a simple
approach for multi-modal learning
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Multi-modal learning contains intra-modality dependencies

Dependency among the
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Language Prior is Not the only Shortcut: A benchmark for shortcut learning in VQA? (Si et al., 2022)
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Multi-modal learning contains inter-modality dependencies

Dependency among the
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Relative strength of these dependencies is unknown
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Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs.(Tong et al., 2024)



Conventional methods capture
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Categorization of architectural strategies

For input modalities (X, X’) and label y
QX,X’ (y ‘ X, X,)
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Early fusion Intermediate fusion

What makes training multi-modal classification networks hard? (Wang et al., 2020)
Characterizing and overcoming the greedy nature of learning in multi-modal deep neural networks (wu et al., 2022)
Balanced Multimodal Learning via On-the-fly Gradient Modulation (Peng et al., 2022)

Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone. (Dou et al., 2022)
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What makes training multi-modal classification networks hard? (Wang et al., 2020)
Characterizing and overcoming the greedy nature of learning in multi-modal deep neural networks (wu et al., 2022)
Balanced Multimodal Learning via On-the-fly Gradient Modulation (Peng et al., 2022)

Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone. (Dou et al., 2022)



Categorization of architectural strategies

For input modalities (X, X’) and label y :
QX,X’ (y ‘ X, X,) ; dx (y | X) dx’ (y | X,>
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Inter-modality modeling . Intra-modality modeling

Majority Vote of Diverse Classifiers for Late Fusion (Morvant et al., 2014)
On integrating a language model into neural machine translation. (Gulcehre et al., 2017)
FLAVA: A Foundational Language And Vision Alignment Model (Singh et al., 2022)



12M2

Jointly modeling
Inter-& Intra-modality
dependencies
Modality & architecture agnostic




Both Inter-and Intra-modality are important

Based on the multi-modal generative model, we need to model the
and to predict the



Capture inter- & intra-modality dependencies

To build a classifier, we need to consider the dependencies between X, X', and y
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To build a classifier, we need to consider the dependencies between X, X', and y
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Capture inter- & intra-modality dependencies

To build a classifier, we need to consider the dependencies between X, X', and y
qX ( ‘ X) qX ( ‘ X)
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Training Recipe

* Build modality-specific classifiers and a classifier that captures their interaction

» Combine them by building a product of experts



Results on healthcare, vision
and language tasks
with different strengths of
inter- & intra-modality
dependencies




Digit recognition with audio and vision modalities

Vision modality includes , while the audio modality
contains spoken by humans
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Inter-modality interactions are essential

Inter-modality interactions are essential for this task as [2M2 outperforms both
the unimodal and intra-modality models.
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Enhanced flexibility and effectiveness

[2M2 eliminates the need to pre-determine which dependencies should be modeled
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Automated Knee Pathology Diagnosis

We leverage for automated diagnosis
Meniscus Tear Cartilage Magnitude

Target labels Input modalities



Automated Knee Pathology Diagnosis
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Navigating Inter-& Intra-Modality Dependencies

When Intra-modality dependencies matter i.e., one dependency type is missing,
[2M2 effectively captures the other
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Natural Language Visual Reasoning

Ascertain if the sentence or the image pair

Image Modality

There are more birds in the image on the left than in the There are more birds in the 1mage on the left than in the

| 1image on the right. | image on the right.
M D __

Question

Answer True - False




Navigating Inter-& Intra-Modality Dependencies

When Inter-modality dependencies matter i.e, one dependency type is missing,
[2M2 effectively captures the other
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Navigating Inter-& Intra-Modality Dependencies

When Inter-modality dependencies matter i.e, one dependency type is missing,
[2M2 effectively captures the other
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What'’s next

Harnessing the capabilities of recent inter- and intra-modality models

SupViT I-JEPA SAM
LLaVA InstructBLIP Qwen2-VL
Cambrian VITA InternVL

Llama Mistral OLMo

Inter-modality models

Gemma Qwen Phi




What'’s next

Harnessing the capabilities of multi-modal healthcare data

Diagnosis and early
risk prediction
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What'’s next

Harnessing the capabilities of multi-modal healthcare data

Diagnosis and early
risk prediction
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Takeaway
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Inter- & Intra-modality modeling (12M2)
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Inter- & Intra-modality modeling (12M2)

Integrate your dataset and inter-modality model in our framework and
share the amazing results with the community! &

A dmadaan.com/ y dmadaan_ B divyam.madaan@nyu.edu



