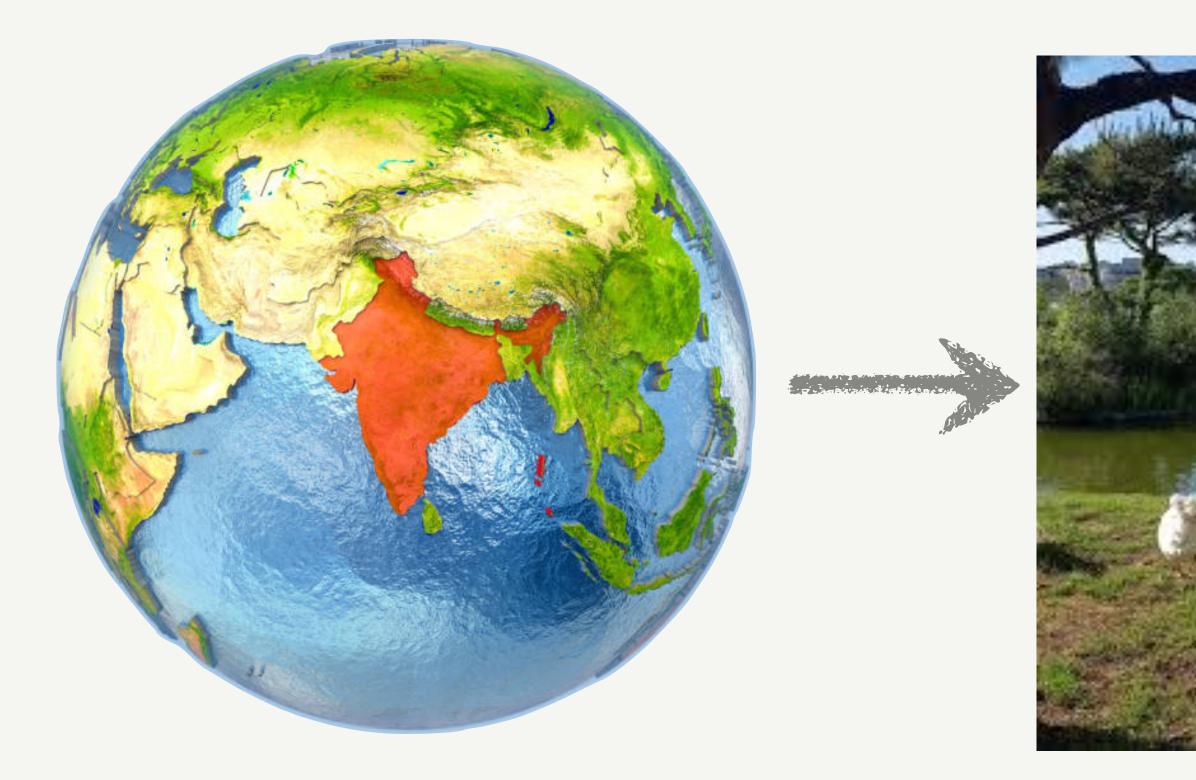
Jointly Modeling Inter- & Intra-Modality Dependencies for Multi-modal Learning

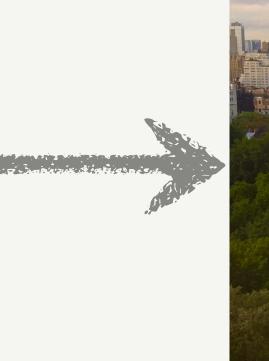
Divya Deep Learning Dint work with Taro Makino

Divyam Madaan

- **Deep Learning Classics and Trends**
- Joint work with Taro Makino, Sumit Chopra, Kyunghyun Cho

Background about me





Map multiple modalities to the target

Input contains multiple modalities (x, x') and target label y

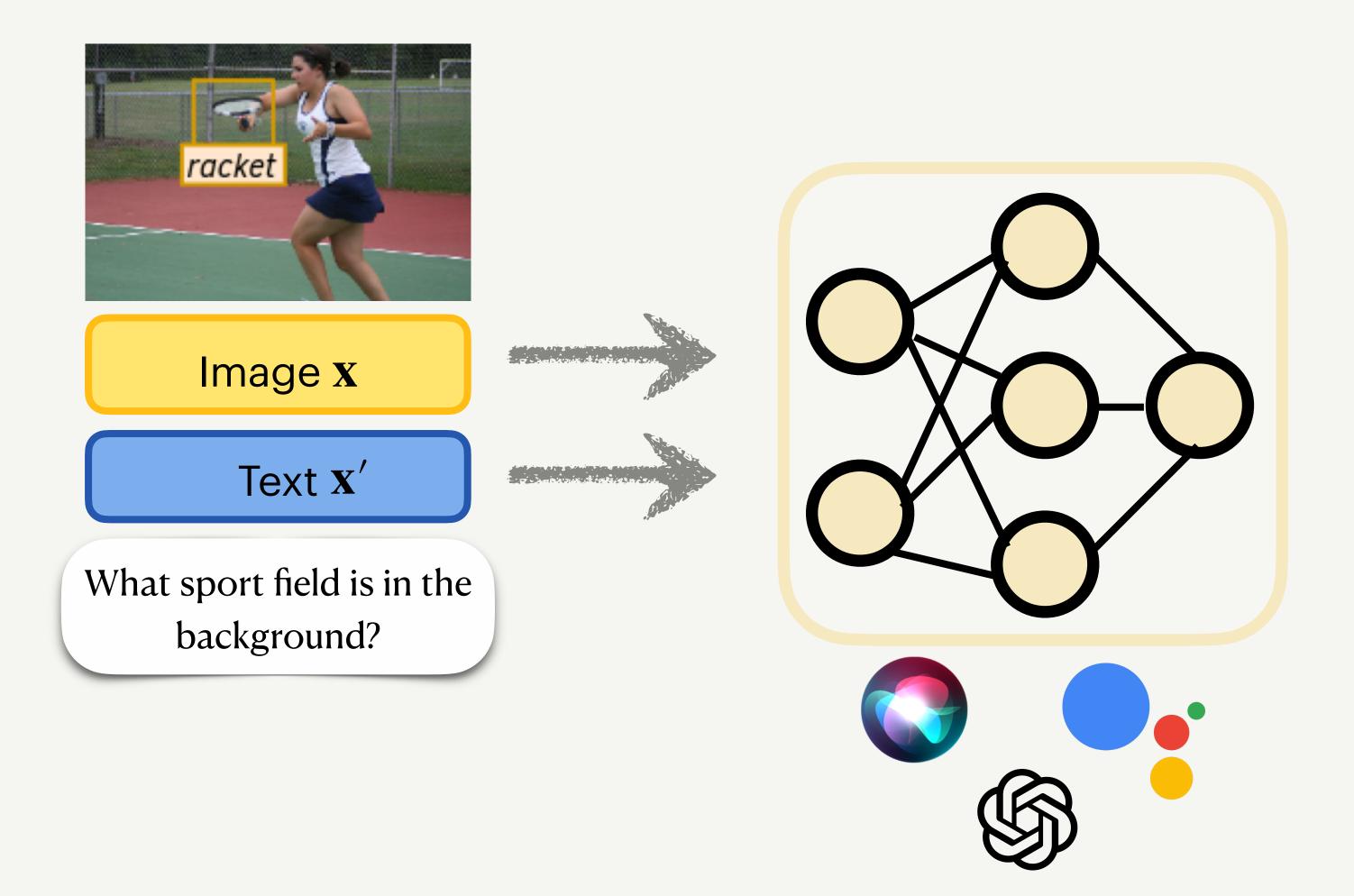
Map multiple modalities to the target

Input contains multiple modalities (x, x') and target label y

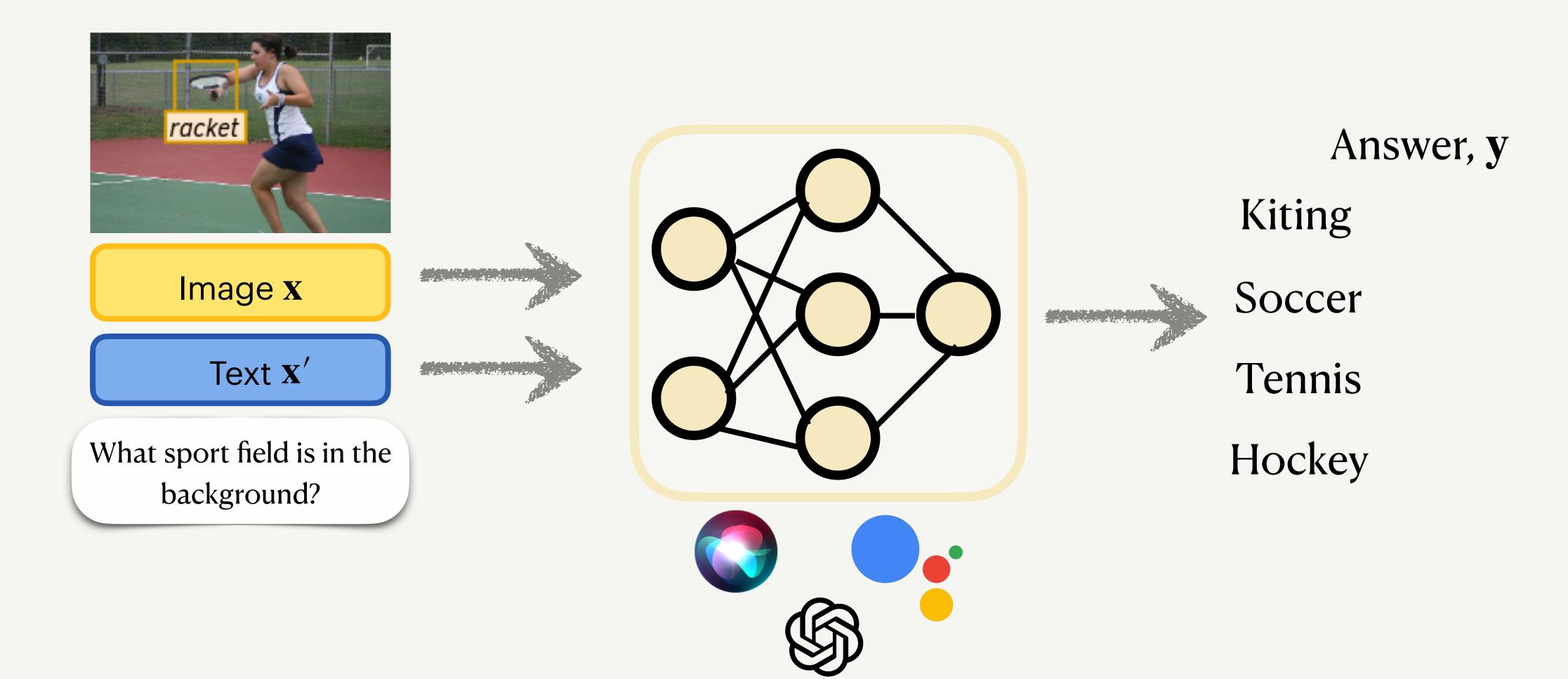
Text \mathbf{X}'

What sport field is in the background?

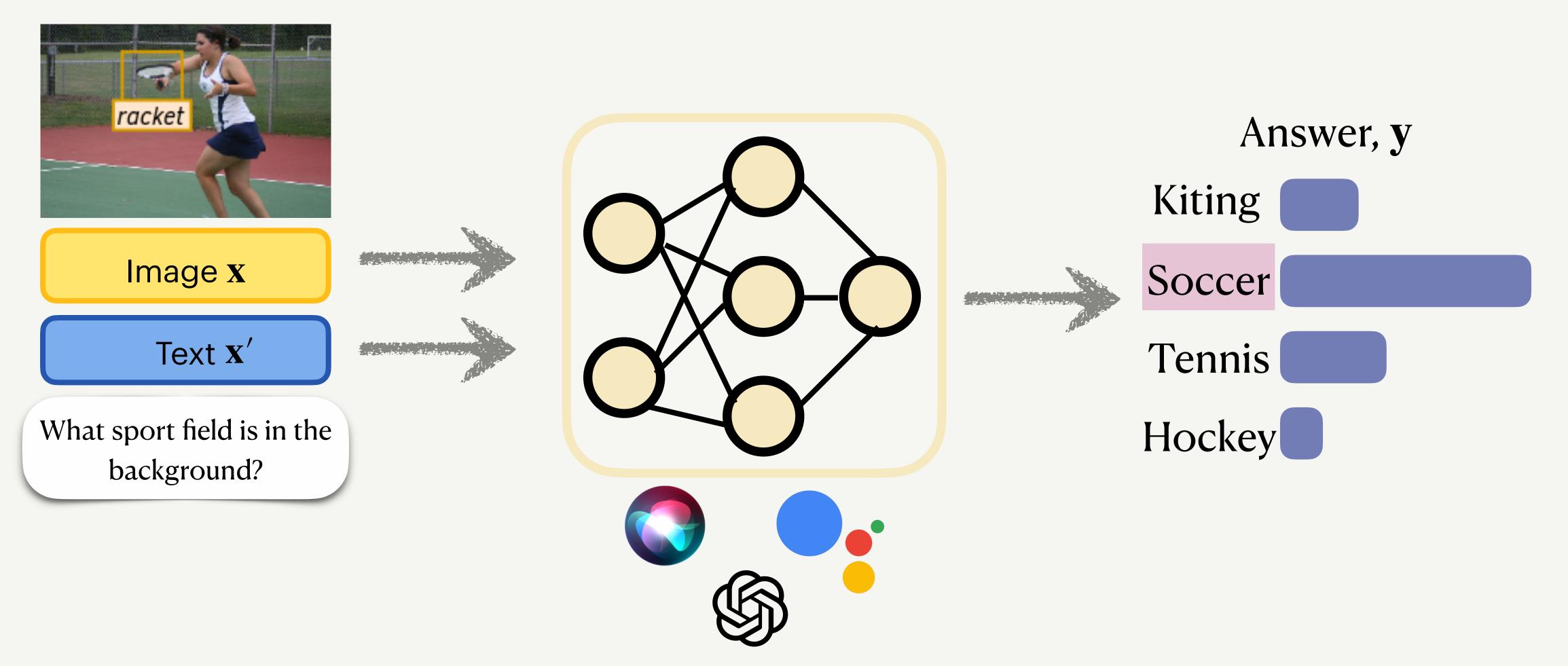
Map multiple modalities to the target Input contains multiple modalities (x, x') and target label y



Map multiple modalities to the target Input contains multiple modalities (x, x') and target label y



Map multiple modalities to the target Input contains multiple modalities (x, x') and target label y



Multi-modal learning: success stories 💥

Usage of multiple modalities has shown success in various applications

LLaVA-NeXT-Interleave: Tackling Multi-image, Video, and 3D in Large Multimodal Models

Feng Li^{1,2*}, Renrui Zhang^{1,3*}, Hao Zhang^{1,2*}, Yuanhan Zhang^{1,4}, Bo Li^{1,4}, Wei Li¹, Zejun Ma¹, Chunyuan Li¹

¹ ByteDance ² HKUST ³ CUHK ⁴ NTU

* Core contributor

Multimodal biomedical AI

Julián N. Acosta¹, Guido J. Falcone¹, Pranav Rajpurkar^{2,4} and Eric J. Topol^{3,4}

The New ChatGPT Can 'See' and 'Talk.' Here's What It's Like.

The Next AI Frontier: How Multimodal Systems Are Reshaping Our World

4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities

Roman Bachmann^{1†*} **Oğuzhan Fatih Kar**^{1*} **David Mizrahi**^{2†*} Ali Garjani¹ Mingfei Gao² David Griffiths² Jiaming Hu^2 Afshin Dehghan² Amir Zamir¹ ¹Swiss Federal Institute of Technology Lausanne (EPFL) ²Apple

Multimodal: **Al's new frontier**

Multi-modal learning: when More Isn't Better ()

RUBi: Reducing Unimodal Biases for Visual Question Answering

Remi Cadene¹, Corentin Dancette¹, Hedi Ben-younes¹, Matthieu Cord¹, Devi Parikh^{2,3}

Removing Bias in Multi-modal Classifiers: Regularization by Maximizing Functional Entropies

Itai Gat Technion **Idan Schwartz** Technion

Alexander Schwing UIUC

Tamir Hazan Technion

What Makes Training Multi-modal Classification Networks Hard?

Weiyao Wang, Du Tran, Matt Feiszli Facebook AI

Unimodal models and their combinations obtain better performance in many use-cases

Eyes Wide Shut? Exploring the Visual Shortcomings of Multimodal LLMs

Yuexiang Zhai³ Shengbang Tong¹ Zhuang Liu² Yi Ma³ Yann LeCun¹ Saining Xie¹

²FAIR, Meta ¹New York University

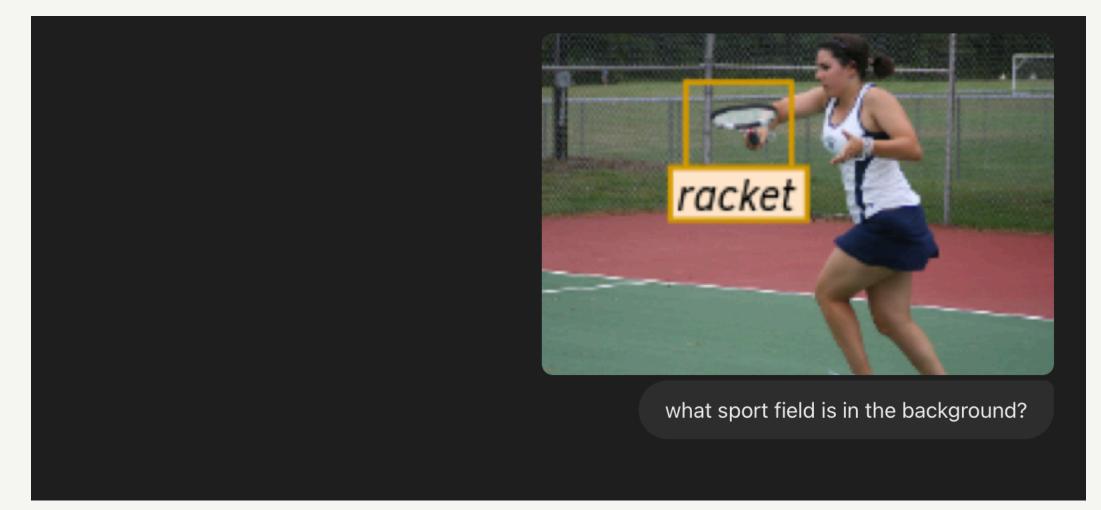
³UC Berkeley

Characterizing and Overcoming the Greedy Nature of Learning in Multi-modal Deep Neural Networks

Nan Wu¹ Stanisław Jastrzębski²¹ Kyunghyun Cho¹³⁴⁵ Krzysztof J. Geras²¹³

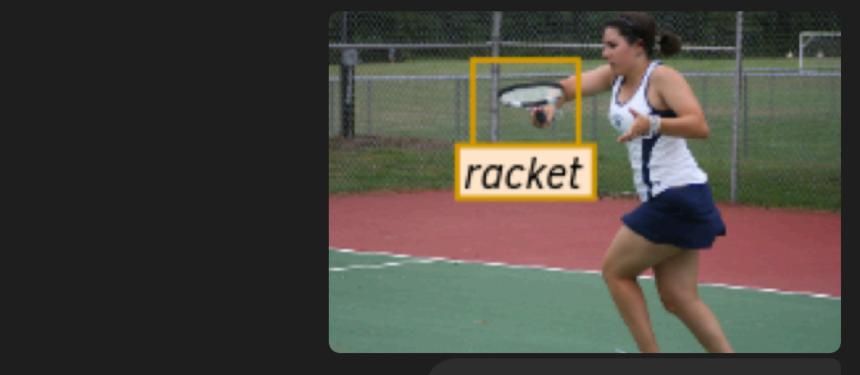
When multi-modal learning isn't better 🕥

Multi-modal learning fails to solve the task in many scenarios



When multi-modal learning isn't better ()

Multi-modal learning fails to solve the task in many scenarios



what sport field is in the background?

୍ଷ୍ମ The field in the background is a tennis court. The surface is painted with green and red sections, typical of many tennis court designs, and the player is holding a racket, indicating this is a tennis match or practice session.

When multi-modal learning isn't better 🚫

Multi-modal learning fails to solve the task in many scenarios

what sport field is in the background?

୍ଷ୍ମ The field in the background is a tennis court. The surface is painted with green and red sections, typical of many tennis court designs, and the player is holding a racket, indicating this is a tennis match or practice session.

Ø

do you see any soccer field in the image?

When multi-modal learning isn't better 🚫

Multi-modal learning fails to solve the task in many scenarios

what sport field is in the background?

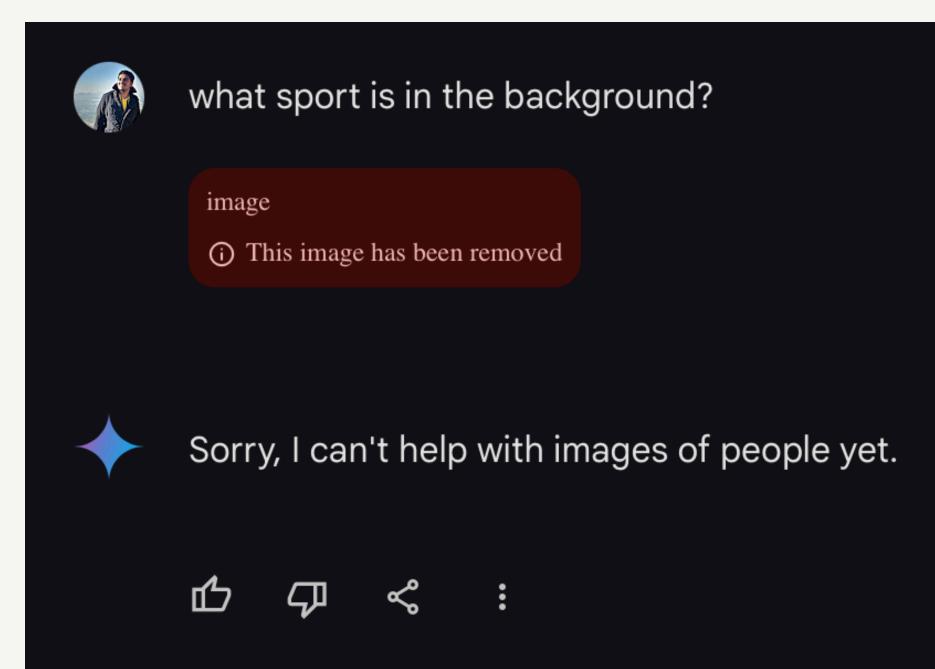
The field in the background is a tennis court. The surface is painted with green and red sections, S typical of many tennis court designs, and the player is holding a racket, indicating this is a tennis match or practice session.

do you see any soccer field in the image?

There isn't a visible soccer field in this image. The court shown in the image has characteristics of a tennis court, as mentioned, with specific colored surfaces and line markings typical for tennis rather than soccer. The fence around the court and the player with a racket further indicate that this is likely a tennis setting, not a soccer field.

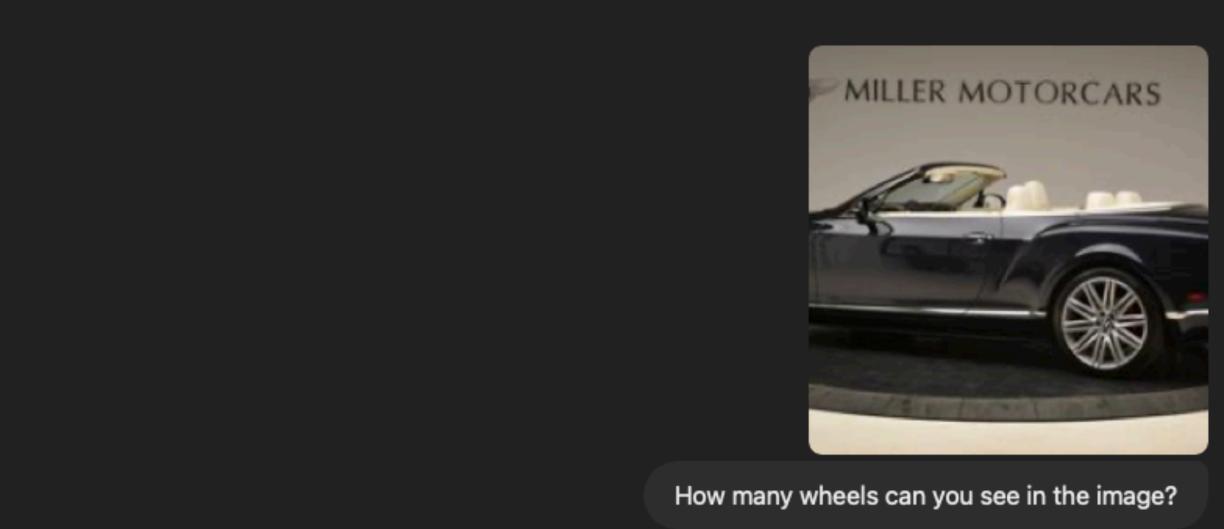
ቀ ወ ይ ግ ግ

S

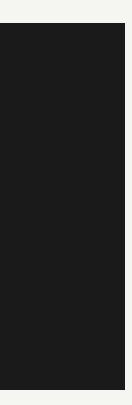


When multi-modal learning isn't better ()

Multi-modal learning fails to solve the task in many scenarios

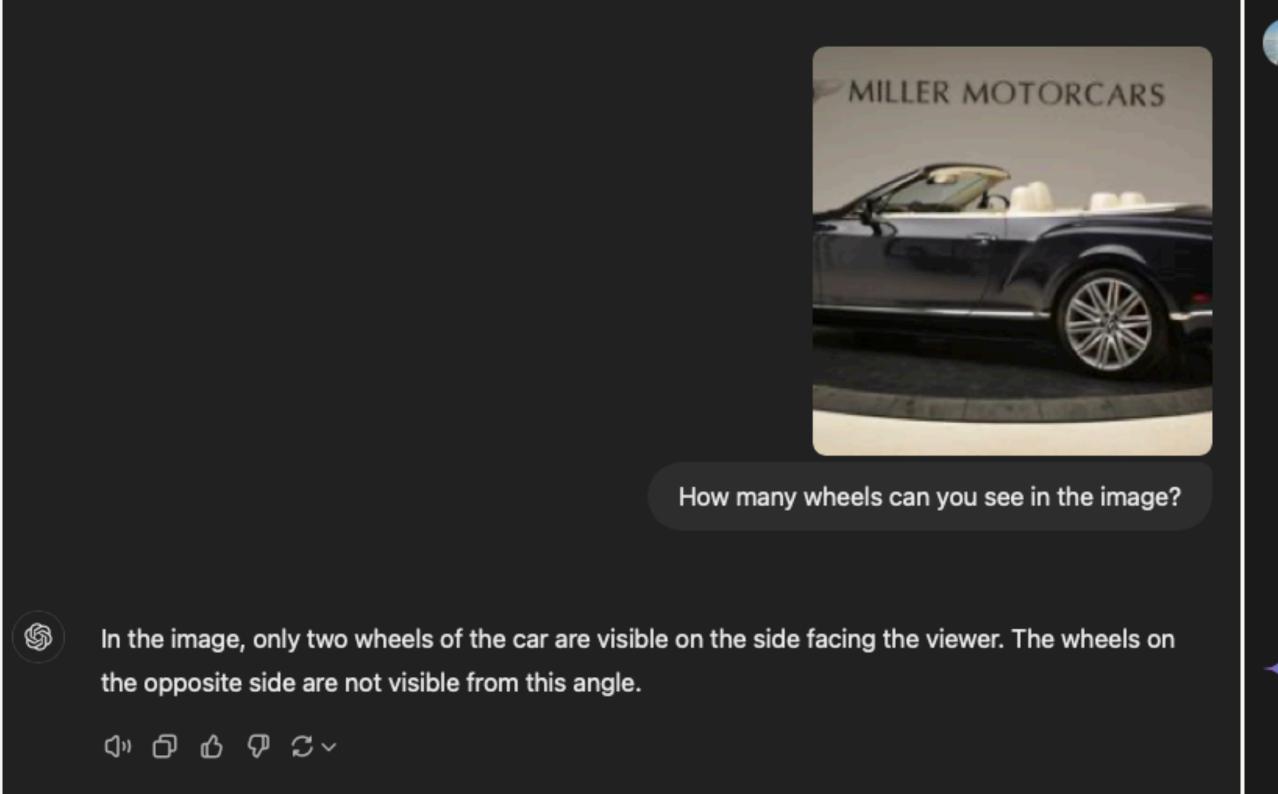


How many wheels can you see in the image?



When multi-modal learning isn't better 🕥

Multi-modal learning fails to solve the task in many scenarios



How many wheels can you see in the image?

Draft 2

There are two wheels visible in the image.

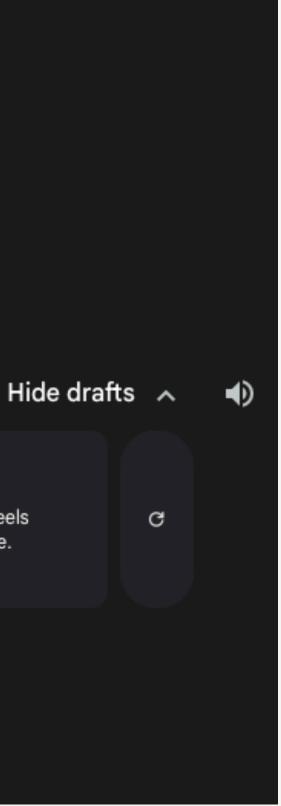
Draft 1

Based on the image, I can see two wheels.

Draft 3

There are **two** wheels visible in the image.

There are two wheels visible in the image.



Uncover underlying factor for these discrepancies

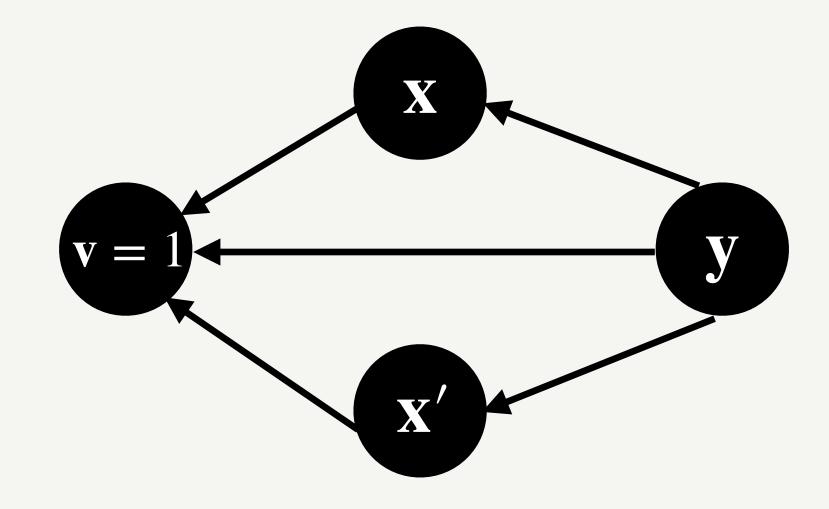
Uncover underlying factor for these discrepancies

Introduce I2M2: a simple approach for multi-modal learning

What is Multi-modal Learning?

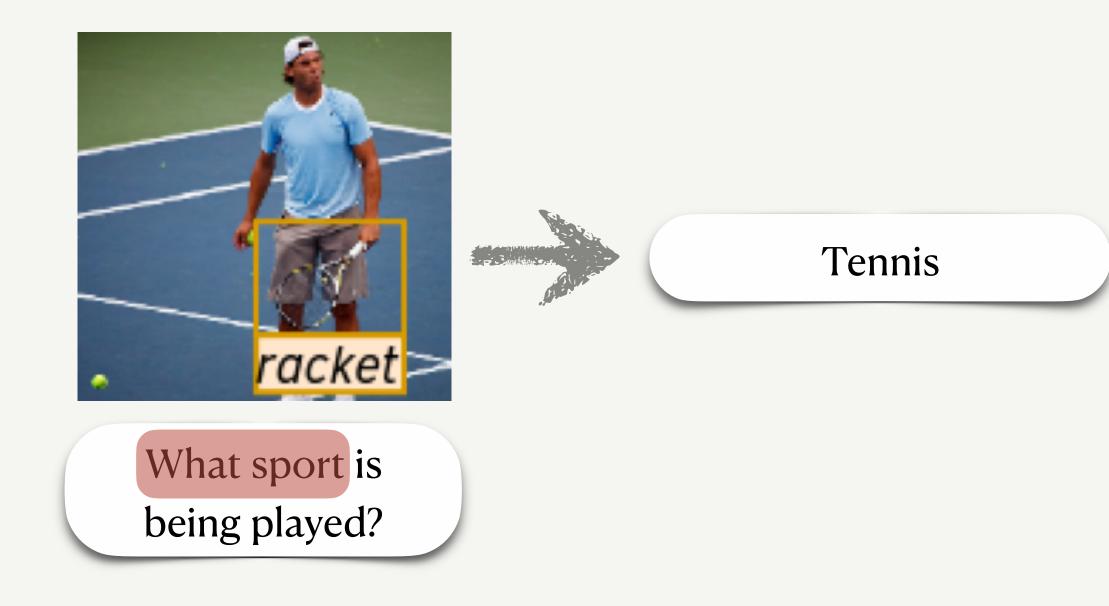
Multi-modal learning

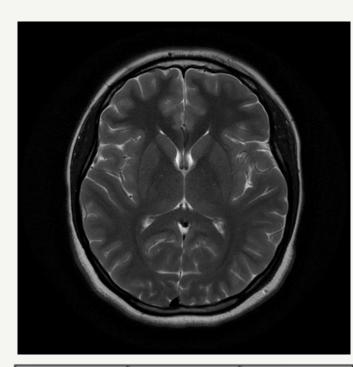
Multi-modal learning contains inter- and intra-modality dependencies

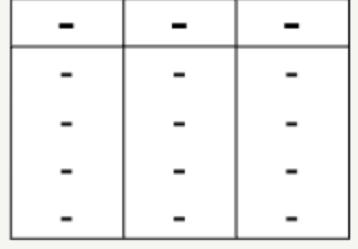


Multi-modal learning contains intra-modality dependencies

Dependency among the features within each modality given the label



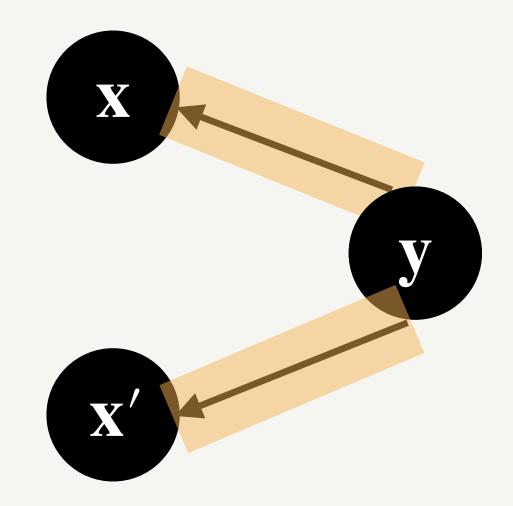




Multi-modal learning contains intra-modality dependencies

Dependency among the features within each modality given the label

$$p(\mathbf{y}, \mathbf{x}, \mathbf{x}') = p(\mathbf{y}) p(\mathbf{x} | \mathbf{y}) p(\mathbf{x}' | \mathbf{y})$$



Multi-modal learning contains inter-modality dependencies

Dependency among the features across modalities given the label

What sport field is in the background?

Soccer

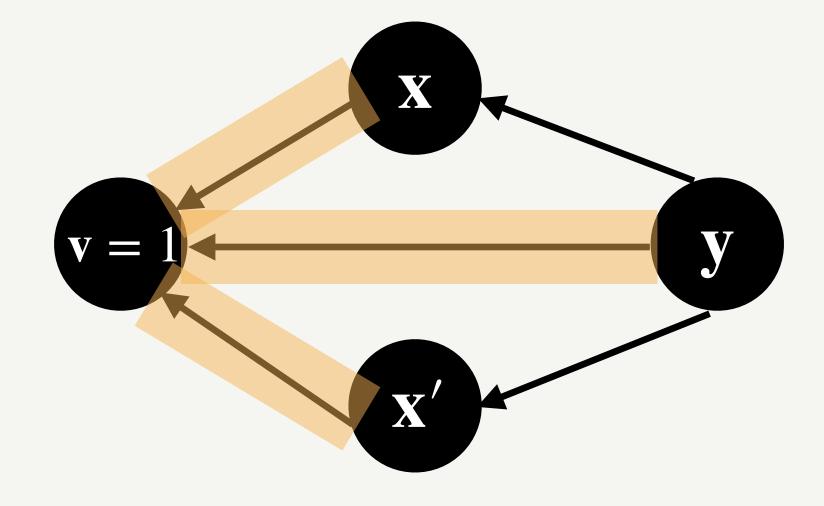
We have built a smart robot. It understands a lot about images.

Your task is to stump the smart robot

Multi-modal learning contains inter-modality dependencies

Dependency among the features across modalities given the label

 $p(\mathbf{y}, \mathbf{x}, \mathbf{x}', \mathbf{v} = 1) = p(\mathbf{y}) p(\mathbf{x} | \mathbf{y}) p(\mathbf{x}' | \mathbf{y}) p(\mathbf{v} = 1 | \mathbf{y}, \mathbf{x}, \mathbf{x}')$

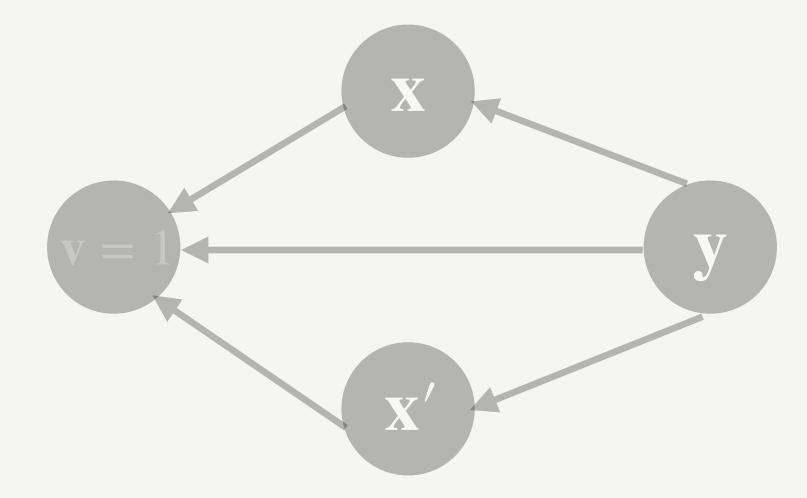


Multi-modal learning

Dependency among the features across modalities given the label

 $p(\mathbf{y}, \mathbf{x}, \mathbf{x}', \mathbf{v} = 1) = p(\mathbf{y}) p(\mathbf{x} | \mathbf{y}) p(\mathbf{x}' | \mathbf{y}) p(\mathbf{v} = 1 | \mathbf{y}, \mathbf{x}, \mathbf{x}')$

Relative strength of these dependencies is unknown



Multi-modal learning

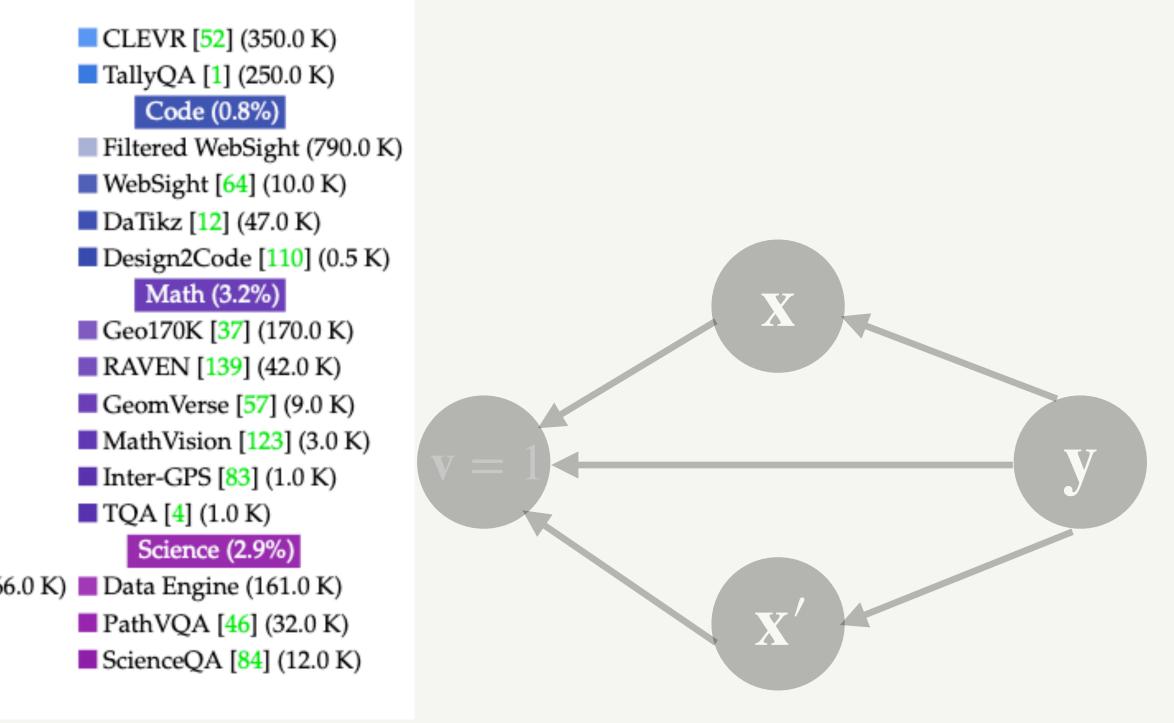
OCR (27.6%) Filtered DVQA (1550.0 K) DVQA [54] (775.0 K) SynthDog [60] (500.0 K) ArxivQA [69] (100.0 K) OCRVQA [93] (80.0 K) ScreenQA [49] (79.0 K) WIkiSQL [144] (74.0 K) Low-Level Vision [22] (50.0 K) DocVQA [90] (39.0 K) WTQ [99] (38.0 K) ChartQA [89] (28.0 K) IconQA [82] (27.0 K) Chart2Text [55] (26.0 K) TabMWP [81] (23.0 K) TextCaps [111] (22.0 K) LLAVAR [140] (20.0 K) ST-VQA [15] (17.0 K) AI2D [58] (15.0 K)

RenderedText [125] (10.0 K) VisText [115] (9.0 K) FinQA [26] (6.0 K) InfoVQA [14] (2.0 K) TAT-QA [148] (2.0 K) HiTab [27] (2.0 K) General (33.3%) ALLaVA [20] (700.0 K) Q-Instruct [126] (400.0 K) LNQA [101] (302.0 K) LVIS-Instruct4V [122] (220.0 K) LLaVA150K [75] (150.0 K) VisualGenome [62] (86.0 K) VQAv2 [43] (83.0 K) GPT4V Rewritten (77.0 K) GQA [50] (72.0 K) A-OKVQA [108] (50.0 K) AlfWorld [137] (45.0 K) ShareGPT [22] (40.0 K)

RefCOCO [131] (30.0 K) VizWiz [44] (20.0 K) Visual7W [149] (14.0 K) LAION GPT-4V [63] (11.0 K) **IDK** [17] (11.0 K) OKVQA [88] (9.0 K) HatefulMemes [59] (8.0 K) OODVQA [120] (8.0 K) SketchyVQA [120] (8.0 K) Visualmrc [114] (3.0 K) Language (23.8%) OpenOrca [71] (994.0 K) MathInstruct [133] (262.0 K) OrcaMath [92] (200.0 K) WizardCoder [86] (143.0 K) OpenCodeInterpreter [143] (66.0 K) Data Engine (161.0 K) Dolly [30] (11.0 K) Counting (8.5%) Filtered CLEVR (350.0 K)

Relative strength of these dependencies is unknown

Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs.(Tong et al., 2024)

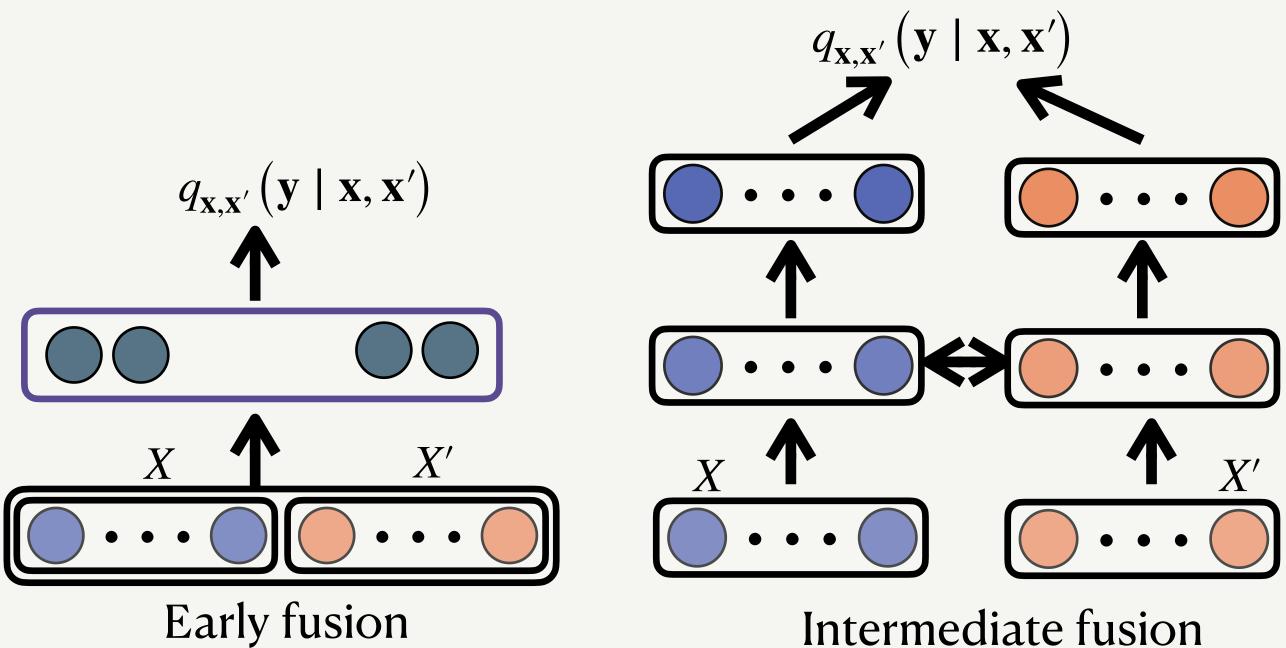


Conventional methods capture either inter- or intra-modality dependencies

Conventional methods capture either inter- or intra-modality dependencies, but not both

Categorization of architectural strategies

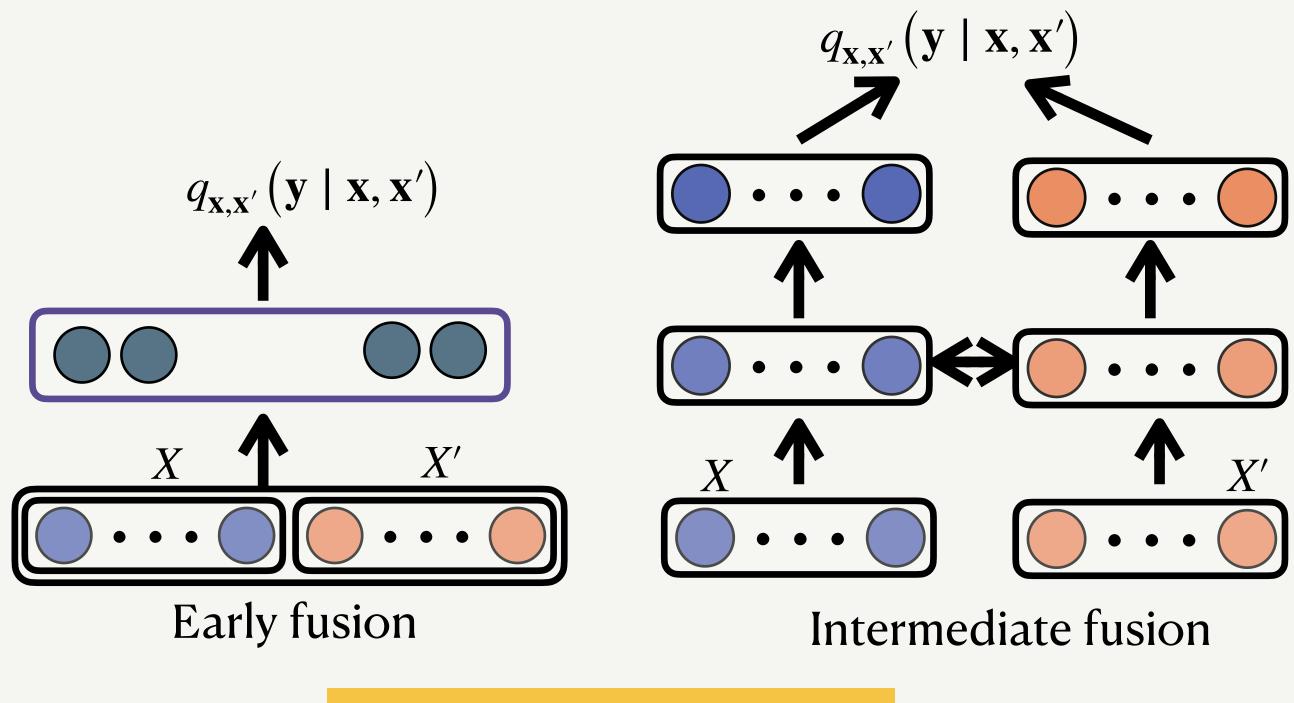
For input modalities $(\mathbf{x}, \mathbf{x}')$ and label \mathbf{y}



What makes training multi-modal classification networks hard? (Wang et al., 2020) Characterizing and overcoming the greedy nature of learning in multi-modal deep neural networks (wu et al., 2022) Balanced Multimodal Learning via On-the-fly Gradient Modulation (Peng et al., 2022) Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone. (Dou et al., 2022)

Categorization of architectural strategies

For input modalities $(\mathbf{x}, \mathbf{x}')$ and label y

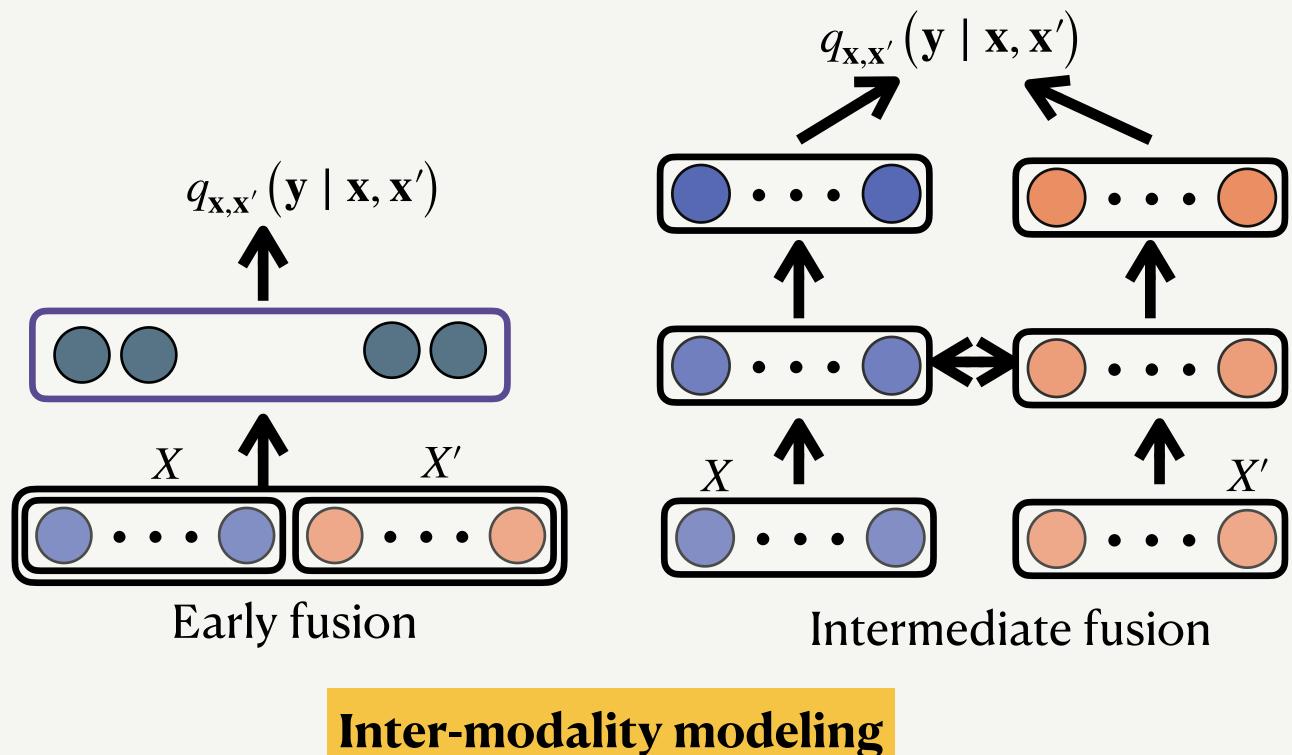


Inter-modality modeling

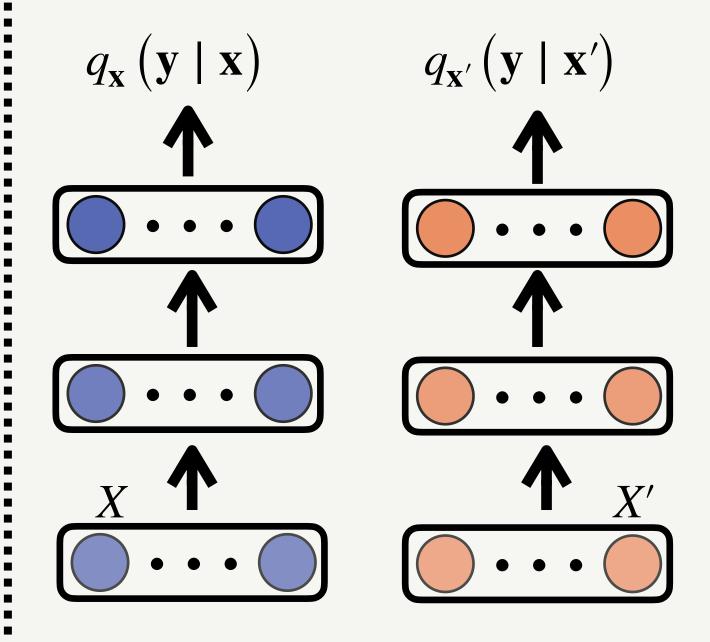
What makes training multi-modal classification networks hard? (Wang et al., 2020) Characterizing and overcoming the greedy nature of learning in multi-modal deep neural networks (wu et al., 2022) Balanced Multimodal Learning via On-the-fly Gradient Modulation (Peng et al., 2022) Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone. (Dou et al., 2022)

Categorization of architectural strategies

For input modalities $(\mathbf{x}, \mathbf{x}')$ and label y



Majority Vote of Diverse Classifiers for Late Fusion (Morvant et al., 2014) On integrating a language model into neural machine translation. (Gulcehre et al., 2017) FLAVA: A Foundational Language And Vision Alignment Model (Singh et al., 2022)



Intra-modality modeling

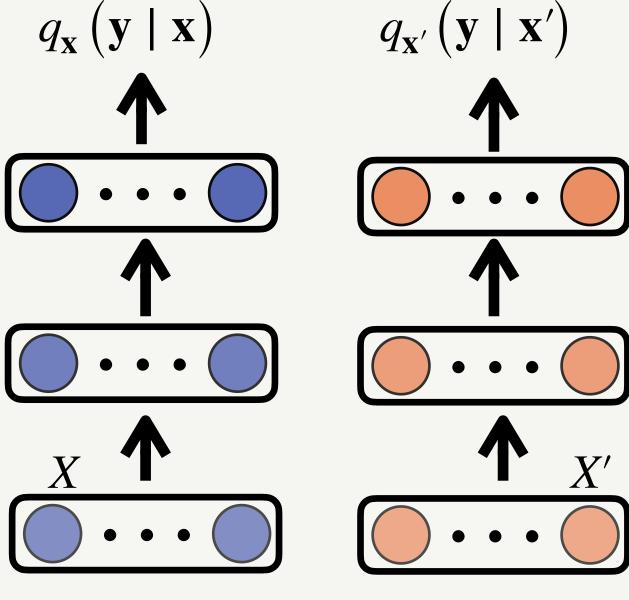
$\mathbb{I}2\mathbb{N}2$ Jointly modeling Inter-& Intra-modality dependencies — Modality & architecture agnostic

Both Inter-and Intra-modality are important

Based on the **multi-modal generative model**, we need to model the **individual modalities** and **their interaction** to predict the **target**

Capture inter- & intra-modality dependencies

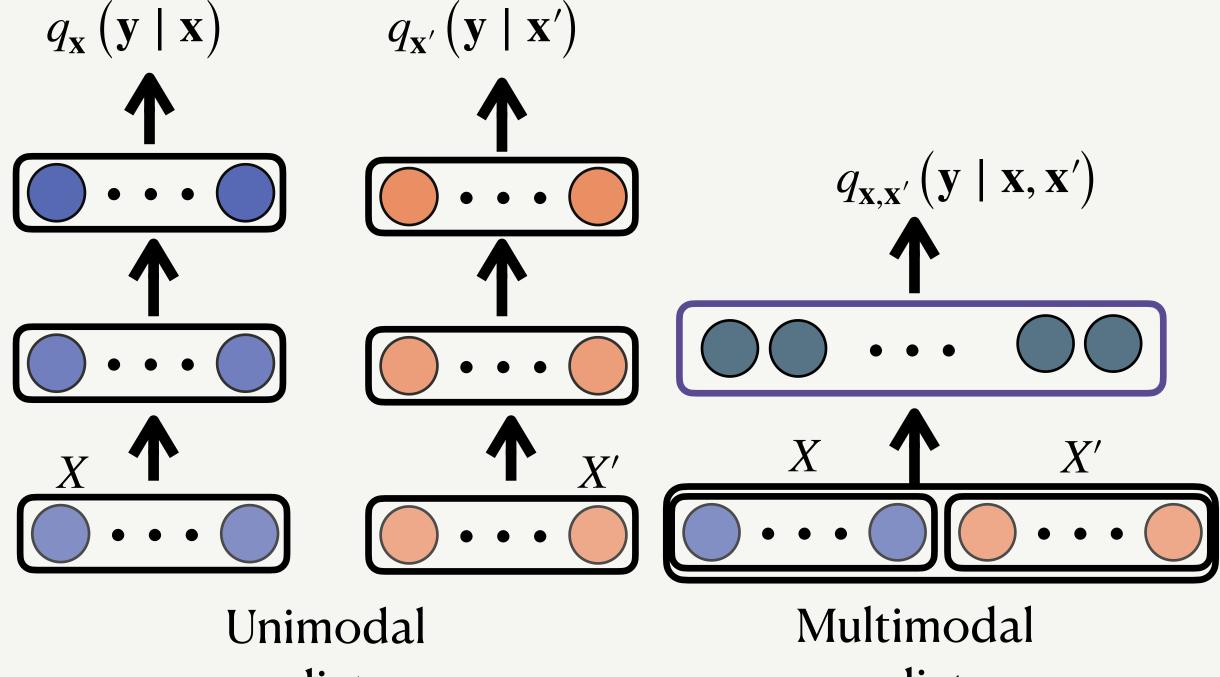
To build a classifier, we need to consider the dependencies between \mathbf{x}, \mathbf{x}' , and \mathbf{y}



Unimodal predictors

Capture inter- & intra-modality dependencies

To build a classifier, we need to consider the dependencies between \mathbf{x} , \mathbf{x}' , and \mathbf{y}



predictors

predictor

Capture inter- & intra-modality dependencies

To build a classifier, we need to consider the dependencies between \mathbf{x}, \mathbf{x}' , and \mathbf{y}

$$p(\mathbf{y} | \mathbf{x}, \mathbf{x}', \mathbf{v} = 1) \propto p(\mathbf{y})$$

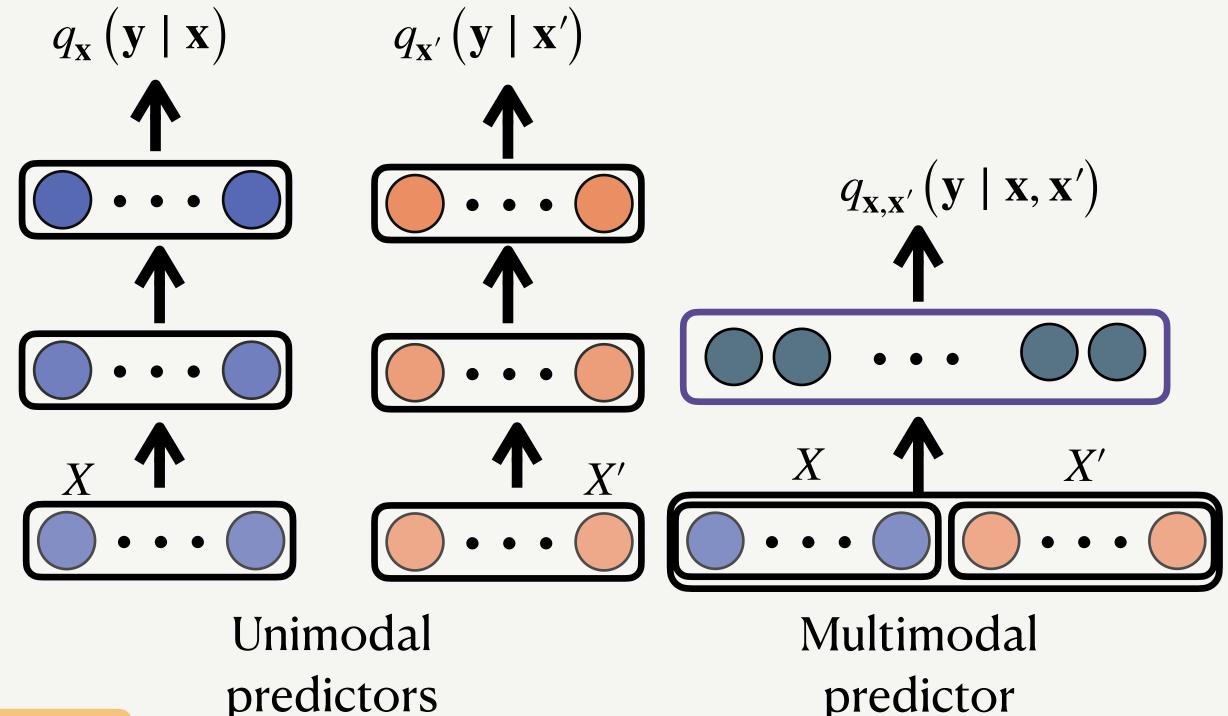
$$\times q_{\mathbf{x}}(\mathbf{y} | \mathbf{x}) \times q_{\mathbf{x}'}(\mathbf{y} | \mathbf{x}')$$

$$\underbrace{q_{\mathbf{x}}(\mathbf{y} | \mathbf{x}) \times q_{\mathbf{x}'}(\mathbf{y} | \mathbf{x}')}_{\text{Unimodal predictors}}$$

$$\times q_{\mathbf{x},\mathbf{x}'}(\mathbf{y} | \mathbf{x}, \mathbf{x}')$$

$$\underbrace{q_{\mathbf{x},\mathbf{x}'}(\mathbf{y} | \mathbf{x}, \mathbf{x}')}_{\text{Multimodal predictor}}$$

- Combine them by building a product of experts



Training Recipe

• Build modality-specific classifiers and a classifier that captures their interaction

Results on healthcare, vision and language tasks with different strengths of inter-& intra-modality dependencies

Digit recognition with audio and vision modalities

Vision modality includes images of handwritten digits, while the audio modality contains recordings of digits spoken by humans

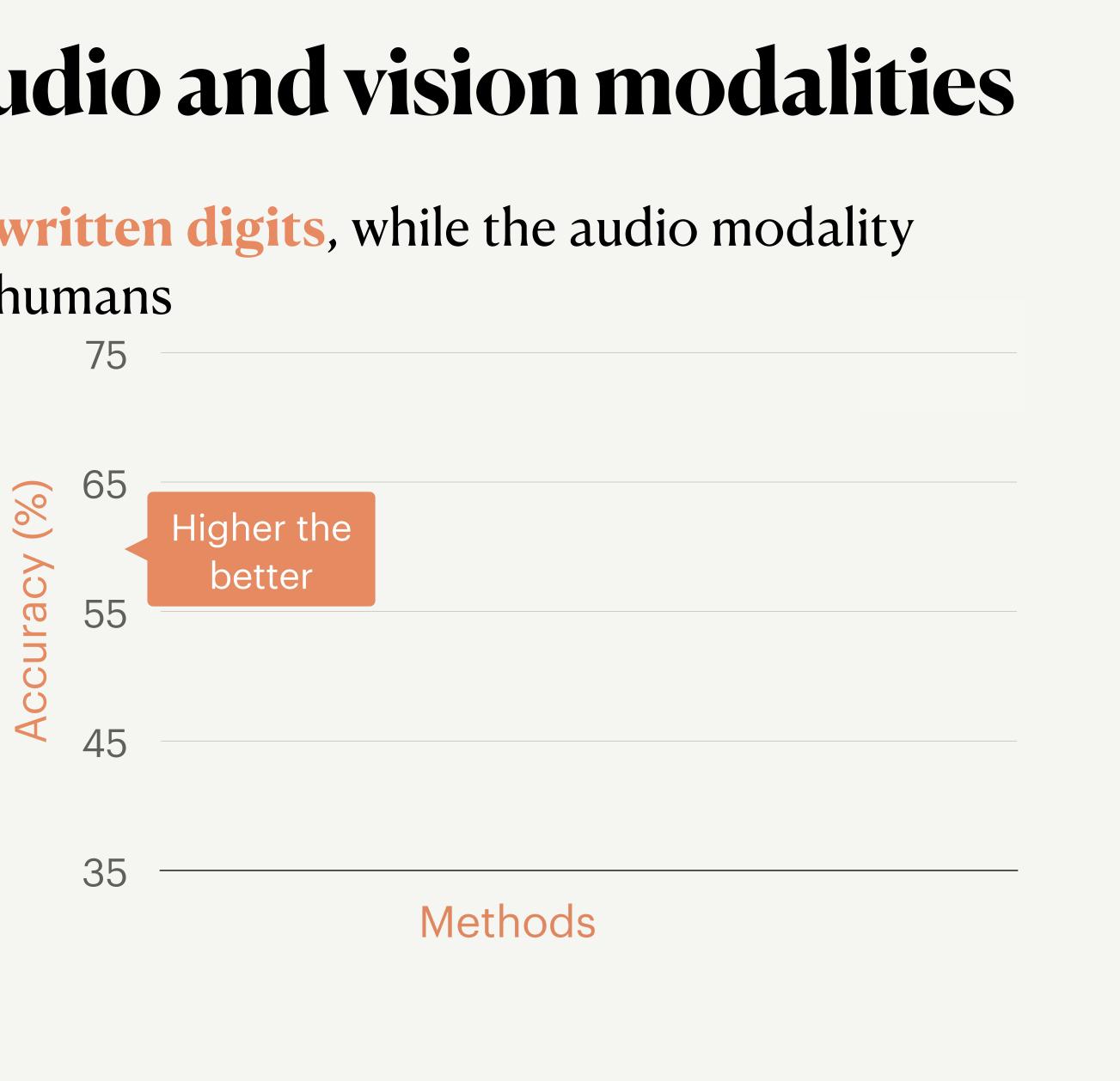
Audio-Vision MNIST

Digit recognition with audio and vision modalities

contains recordings of digits spoken by humans

Audio-Vision MNIST

Vision modality includes images of handwritten digits, while the audio modality



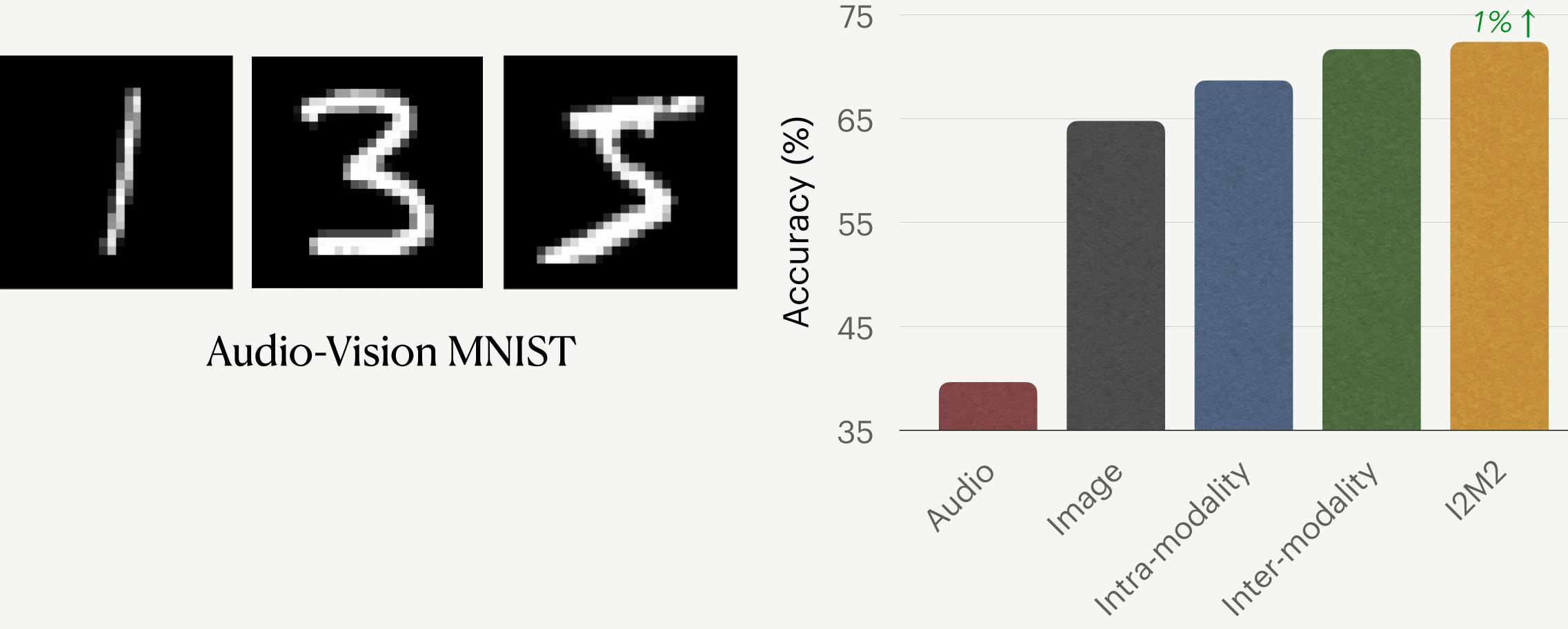
Inter-modality interactions are essential

the unimodal and intra-modality models.

Inter-modality interactions are essential for this task as I2M2 outperforms both

Enhanced flexibility and effectiveness

I2M2 eliminates the need to pre-determine which dependencies should be modeled

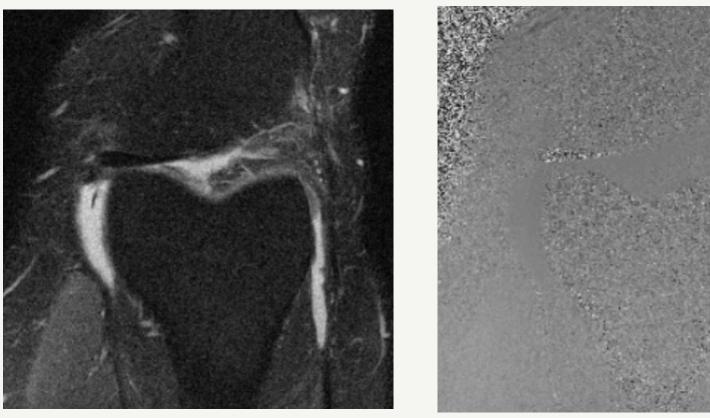


Automated Knee Pathology Diagnosis

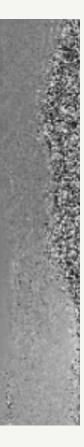
We leverage emulated single coil k-space data for automated diagnosis ACL Meniscus Tear Cartilage Magnitude

Target labels

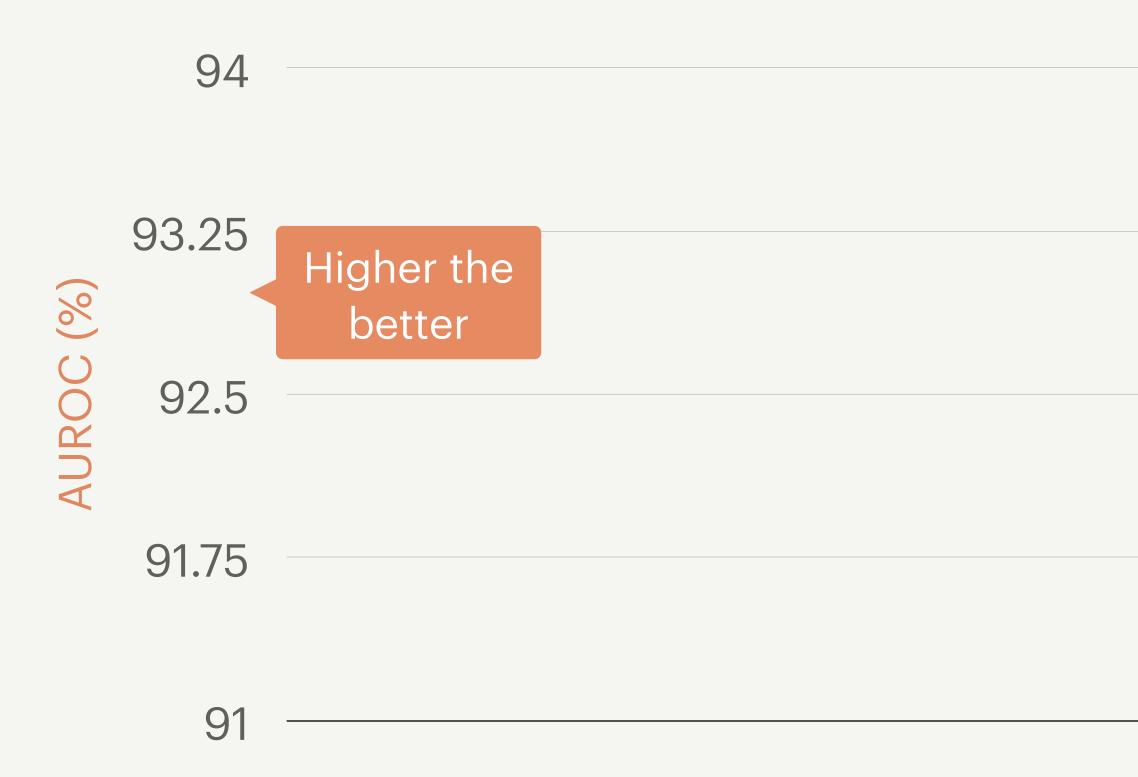
Phase



Input modalities



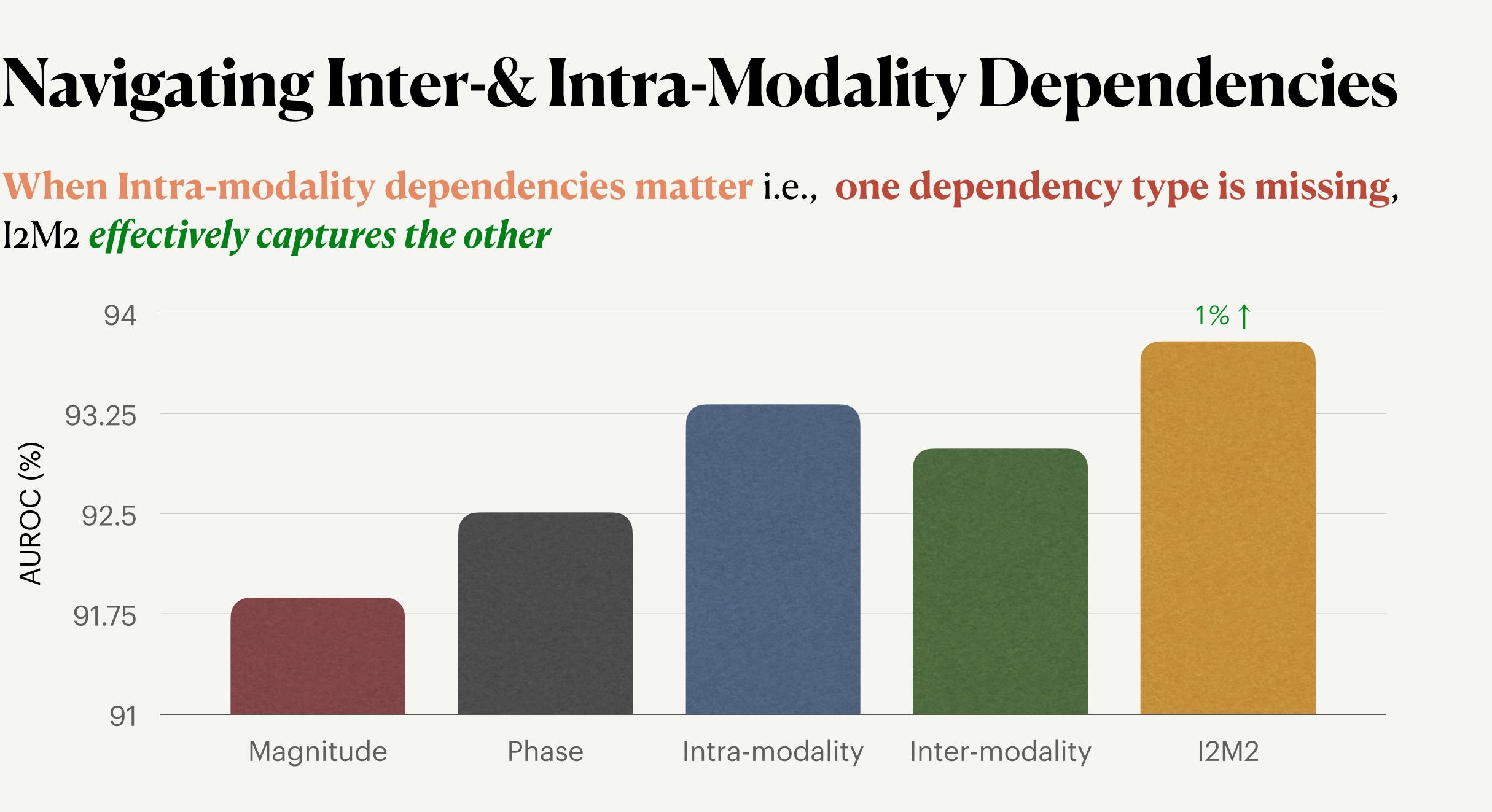
Automated Knee Pathology Diagnosis



Methods

Navigating Inter-& Intra-Modality Dependencies

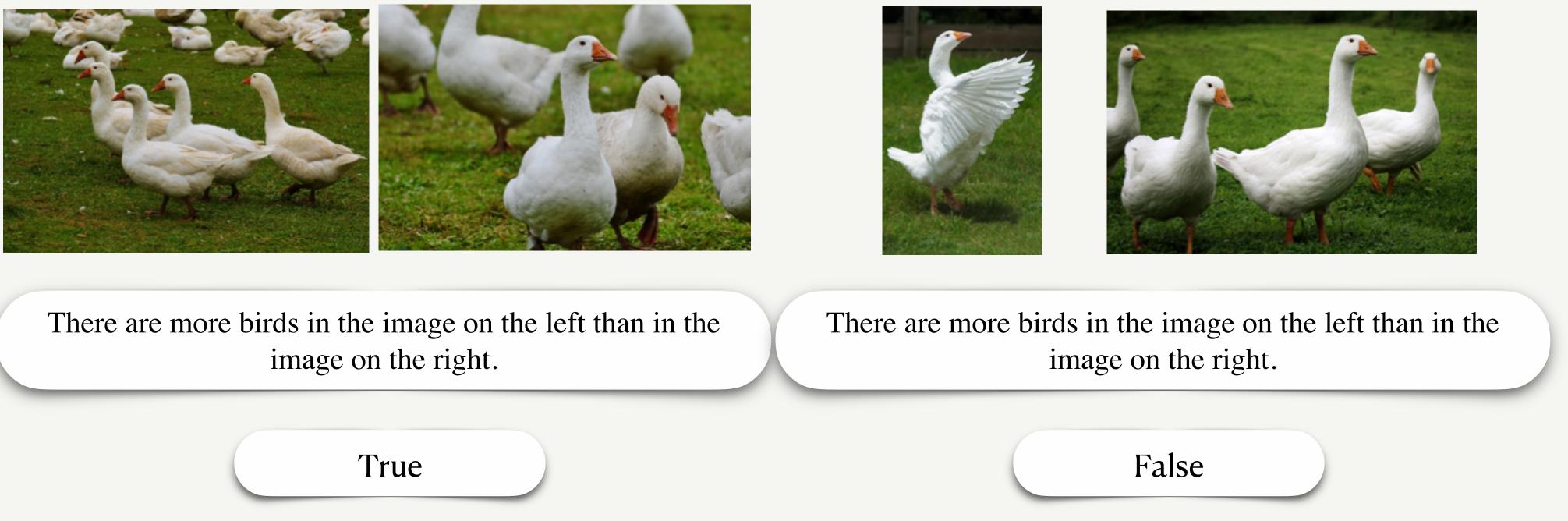
I2M2 effectively captures the other



Natural Language Visual Reasoning

Ascertain if the sentence accurately (True) or inaccurately (False) the image pair

Image Modality



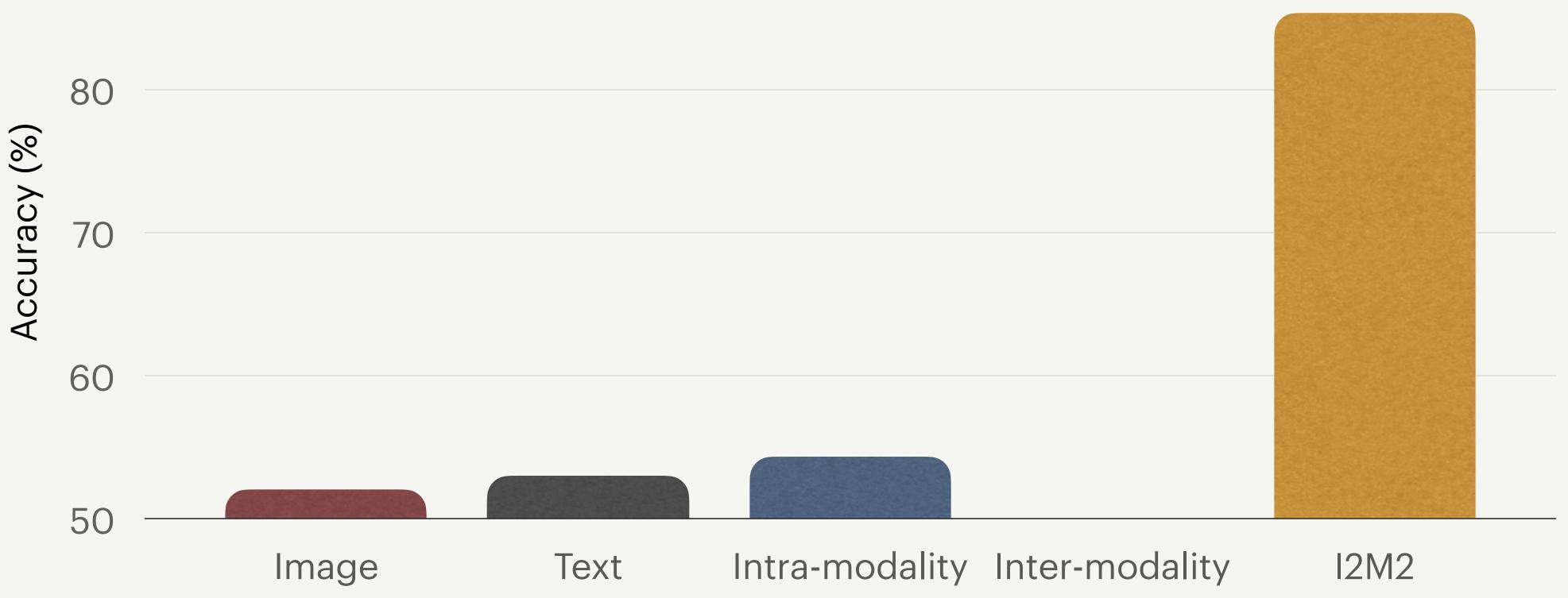
Question

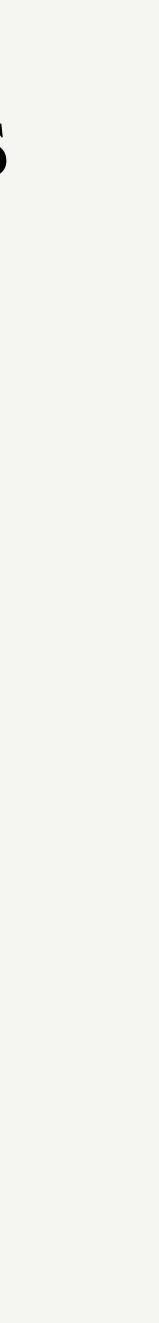
Answer

Navigating Inter-& Intra-Modality Dependencies

When Inter-modality dependencies matter i.e, one dependency type is missing, I2M2 effectively captures the other

90

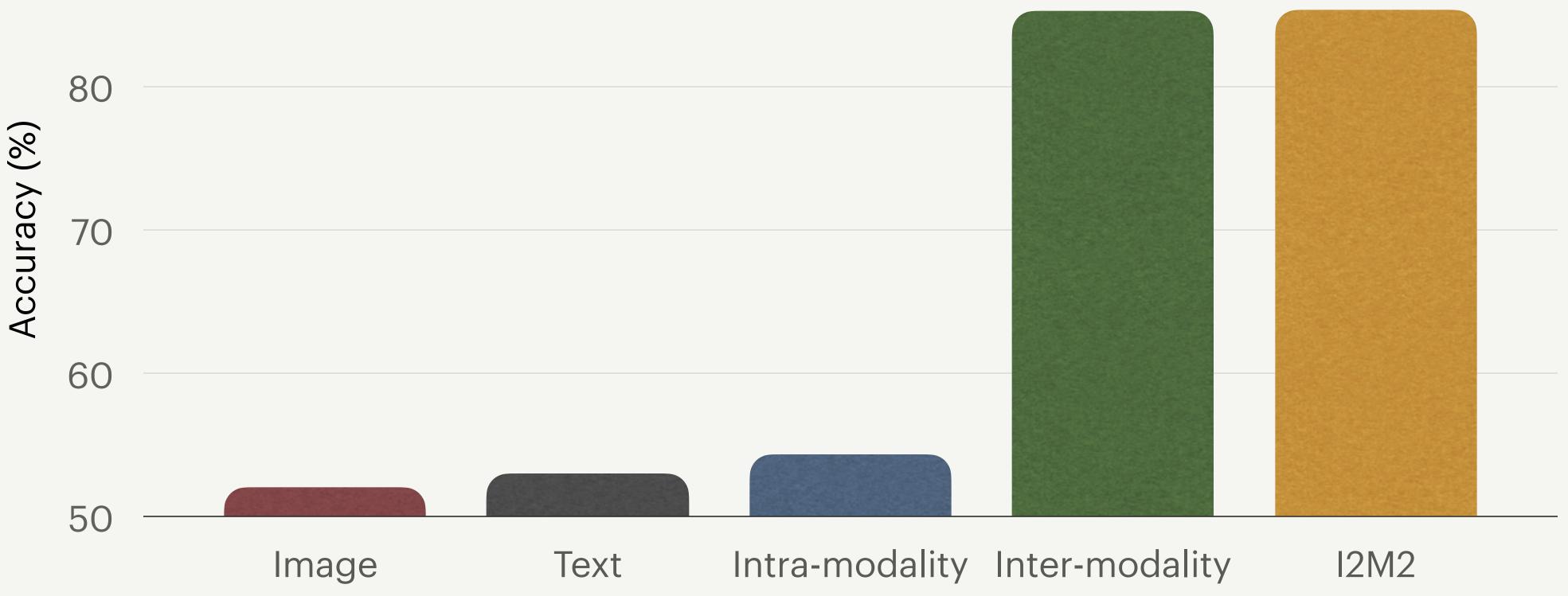


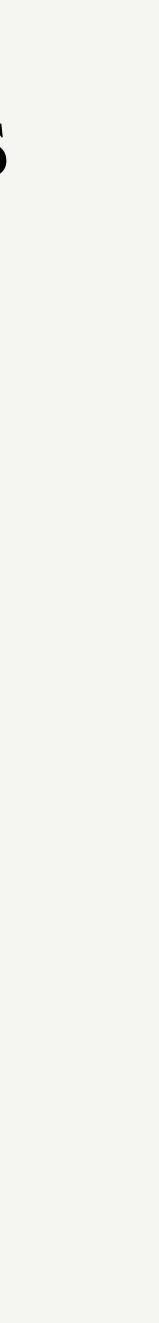


Navigating Inter-& Intra-Modality Dependencies

When Inter-modality dependencies matter i.e, one dependency type is missing, I2M2 effectively captures the other

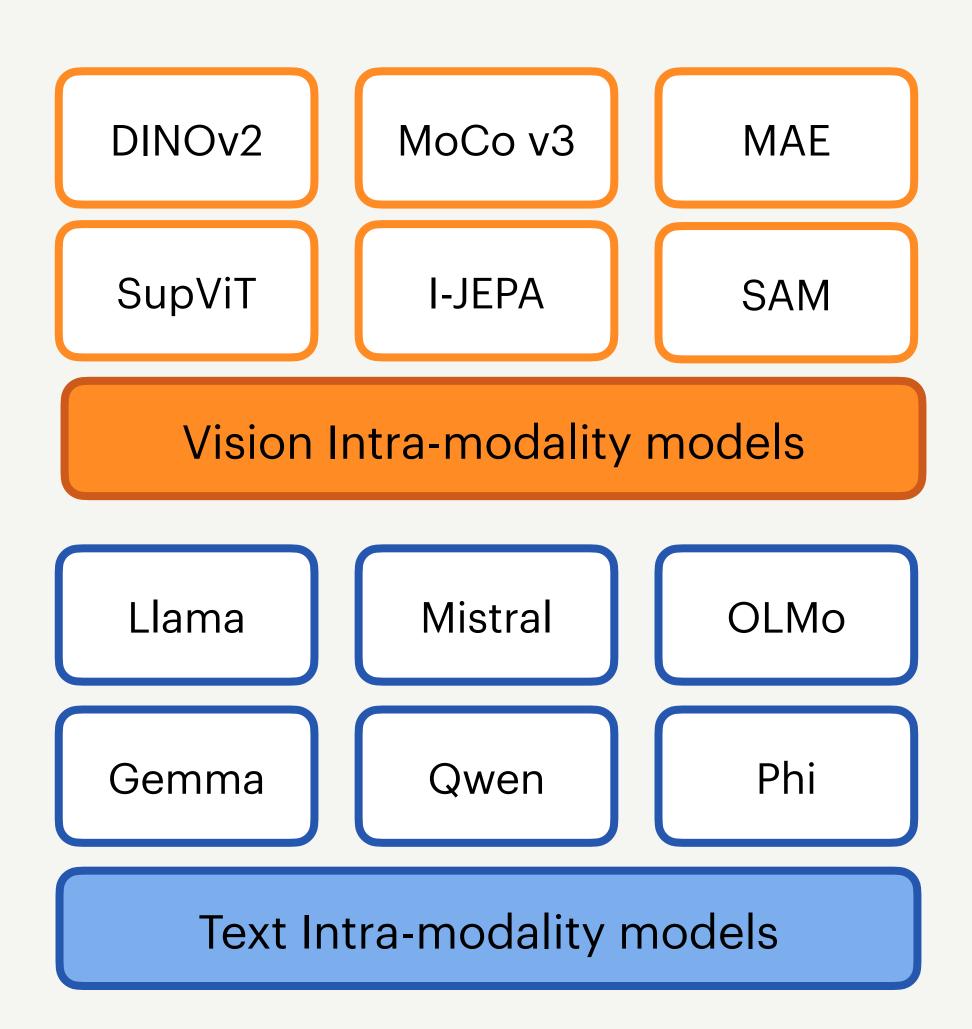
90

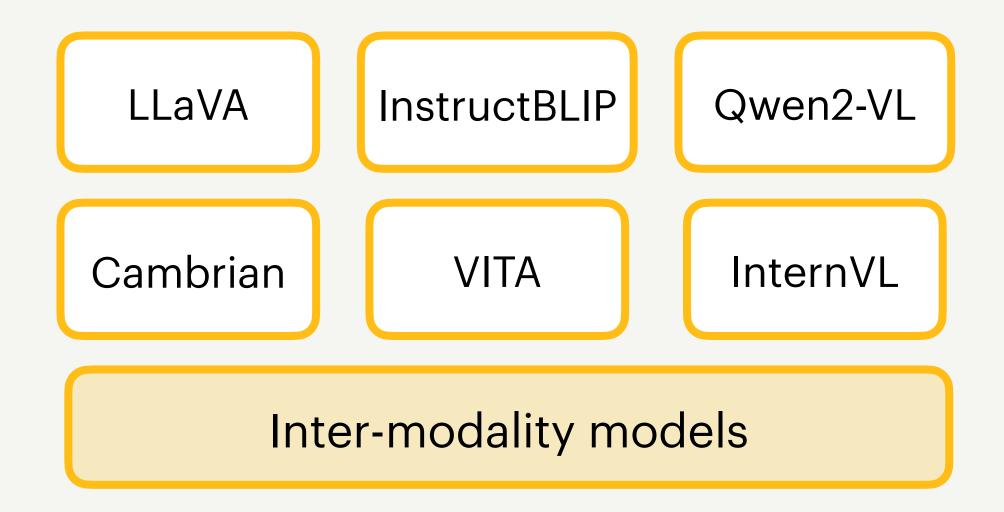




What's next

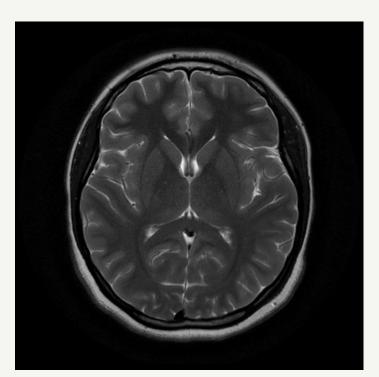
Harnessing the capabilities of recent inter- and intra-modality models





What's next

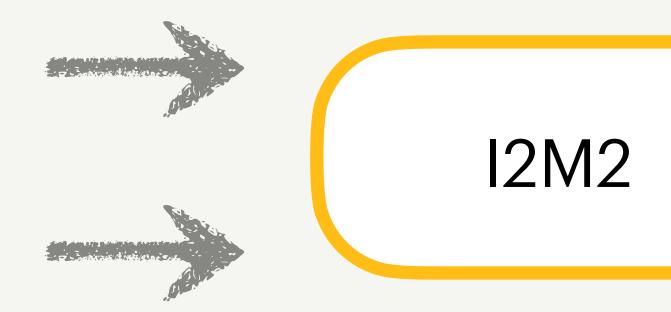
Harnessing the capabilities of multi-modal healthcare data



Medical Images

Tabular data

-	-	-
-	-	-
-	-	-
-	-	-
-	-	-

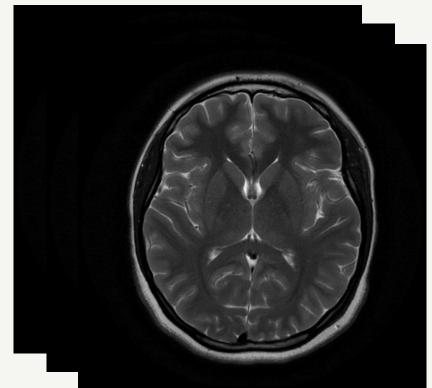


Diagnosis and early risk prediction

Predictions

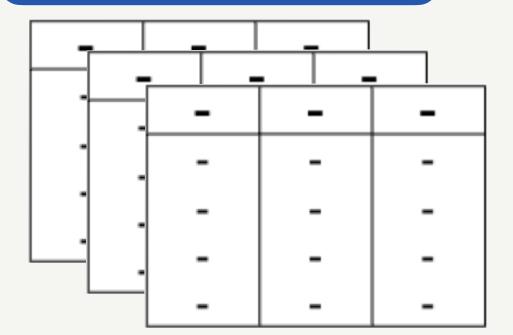
What's next

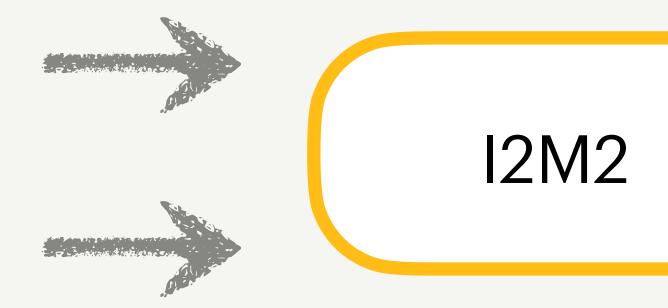
Harnessing the capabilities of multi-modal healthcare data



Longitudinal Medical Images

Longitudinal Tabular data





Diagnosis and early risk prediction

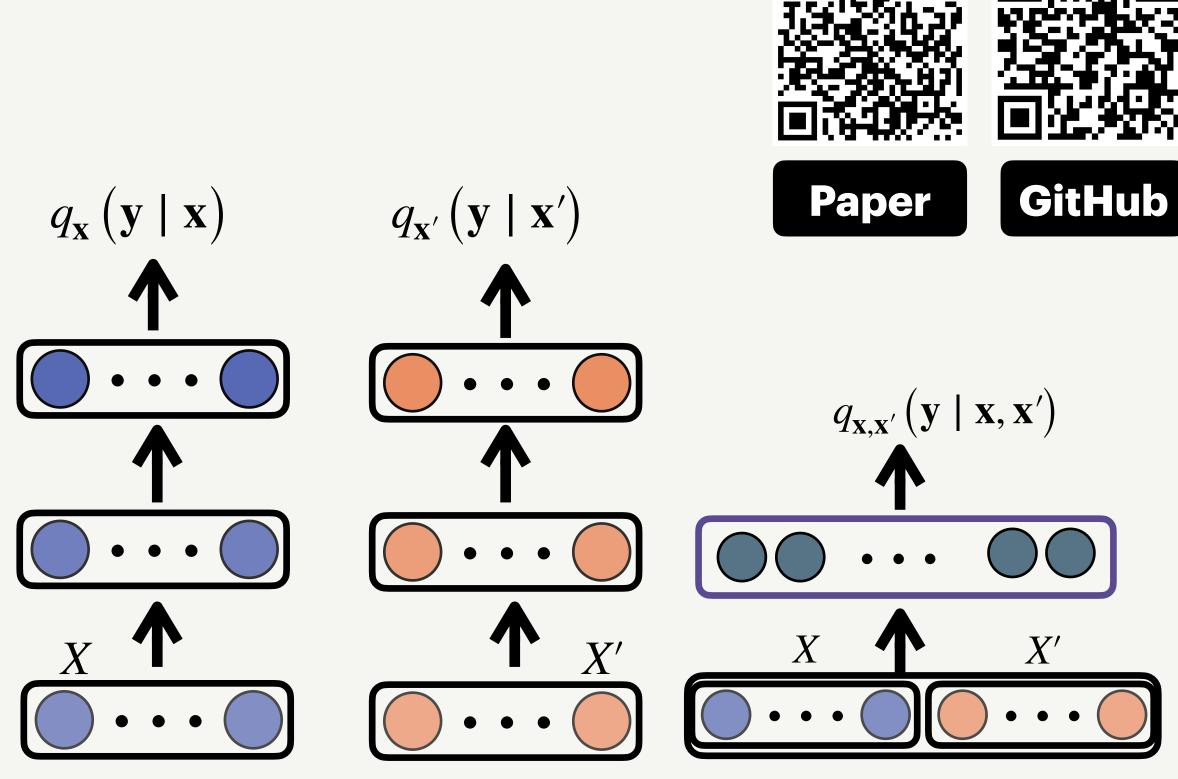
Predictions

Takeaway

Have multiple **"modalities"**?

Takeaway

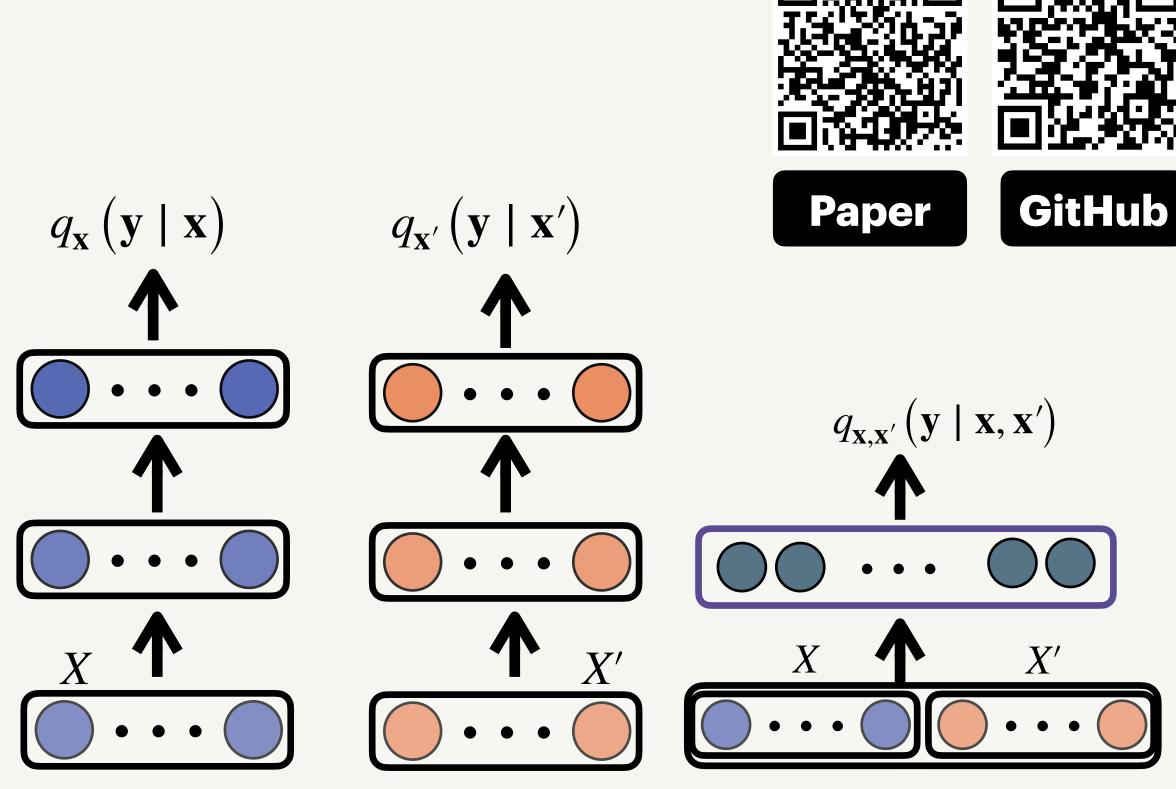
Have multiple "modalities"?



Intra-modality predictors Inter-modality predictor

Inter- & Intra-modality modeling (I2M2)

Have multiple "modalities"?



Intra-modality predictors Inter-modality predictor

Inter- & Intra-modality modeling (I2M2)

Integrate your dataset and inter-modality model in our framework and share the amazing results with the community!

divyam.madaan@nyu.edu

