
Deep Learning: Classics and Trends, ML Collective
Feb 7th 2025

Deep Policy Gradient Methods Without Batch
Updates, Target Networks, or Replay Buffers

Gautham Vasan, Mohamed Elsayed, Alireza Azimi, Jiamin He, Fahim Shahriar,

Colin Bellinger, Martha White & A. Rupam Mahmood

I’m interested in agents that can learn on the fly,
in real-time, by interacting with their environment

Fun with Squirrels 🐿

• Real-time learning

• Learn through trial-and-error interactions with the
environment

• React in milliseconds to achieve their goal

Real-Time Adaptation

iRobot RoombaMars Perseverance RoverApplication of an AR Headset Apple Watch

• In current AI systems, training and deployment are distinct phases, with the
system frozen during deployment

• Learning online, in real-time, can enable such systems to adapt to unforeseen
changes in dynamic environments

• Learning must occur on-device!

Agent-Environment Interaction in Reinforcement Learning (RL)

st+1

State
st

Reward
rt

Action
at

rt+1

Environment

Agent

Batch RL vs Streaming RL

• Batch RL methods sample a batch of data from the replay buffer and use it to make a learning update

• For example, Soft Actor Critic (SAC), Proximal Policy Optimization (PPO) and Twin Delayed DDPG (TD3)

• In contrast, streaming RL methods learn incrementally by processing one sample at a time, without storing any samples

• For example, Actor Critic, Q() and Sarsa()

• Streaming RL methods

• are computationally cheap and amenable to real-time updates

• support on-device learning, which is critical to preserving the privacy and security of the user

λ λ

Elsayed, M., Vasan, G., & Mahmood, A. R. (2024). Streaming Deep Reinforcement Learning Finally Works. arXiv preprint arXiv:2410.14606.

Note:
I’m using incremental and

streaming interchangeably in this
talk

∇θ

Agent State
Action Inference
Learning Update

Timestep
Time

Learning in Simulation

Wang, Y., Vasan, G., & Mahmood, A. R. (2023, May). Real-time reinforcement learning for vision-based robotics utilizing local and remote computers. In 2023 IEEE International Conference on
Robotics and Automation (ICRA) (pp. 9435-9441). IEEE.

“The real world does not pause while the agent
computes actions or makes learning updates”

Agent State
Action Inference

Incremental Update

Timestep (45ms)
Time

∇θ

∇θ

70ms

Batch Update

Asynchronous Process

Image Observation
Proprioception

Real-Time Learning

Example: Vision-based Real-Time RL
Create-Reacher

Wang, Y., Vasan, G., & Mahmood, A. R. (2023, May). Real-time reinforcement learning for vision-based robotics utilizing local and remote computers. In 2023 IEEE International Conference on
Robotics and Automation (ICRA) (pp. 9435-9441). IEEE.

Remote-Local Distributed Learning

Wang, Y., Vasan, G., & Mahmood, A. R. (2023, May). Real-time reinforcement learning for vision-based robotics utilizing local and remote computers. In 2023 IEEE International Conference on
Robotics and Automation (ICRA) (pp. 9435-9441). IEEE.

Jetson Nano 4GB

Workstation  
(128GB RAM,  

12GB Nvidia 3090 GPU)

• Local device

• Policy inference

• Store only Actor π

• Remote device

• Policy learning

• Store: Actor , Two
Q networks, Target
networks and Replay
Buffer

πAsynchronous
Batch RL

• Send an action every 45 milliseconds

• Replay buffer with 1M samples: ~40GB RAM

• Stacked RGB images (160 x 90 x 3)

• Proprioception

• Policy inference time:

• ~17ms on Jetson Nano

• Time per learning update (Batch size 256):

• Nvidia 3090Ti GPU: ~60-70ms

• Jetson Nano: >2s

Compute requirements
for on-device learning Jetson Nano 4GB

Battery  
(20000 mAh)

Depstech 4K Camera

iRobot Create2

Batch deep RL methods like SAC are ill-suited for
real-time on-device learning

Jetson Nano 4GB

Idea #1: Reduce the replay buffer size and use
smaller batch updates that meet the resource

constraints

Deep RL Methods Under Real-Time Learning Constraints

• 10M training steps

• Y-axis reports performance in the last 10K steps, averaged over 30 seeds

• X-axis is in logarithmic scale

Deep RL Methods Under Real-Time Learning Constraints

Deep RL Methods Under Real-Time Learning Constraints

Deep RL Methods Under Real-Time Learning Constraints

• The learning performance of batch policy gradient methods degrades substantially
when the replay buffer size is reduced from their large default values

• PPO, TD3 and SAC fail catastrophically when buffer size is reduced to 1

Idea #2: Use an existing
incremental learning method

Incremental One-Step Actor Critic (IAC)

• IAC learns from a continuous stream
of data, one sample at a time,
without storing any samples

• It uses the likelihood-ratio gradient
(LG) estimator

• It is computationally cheap

• Examples of real-time learning with
linear function approximation

// TD Error

// Critic Update

// Actor Update

δ ← R + γVϕ(S′￼) − Vϕ(S)

ϕ ← ϕ + αV δ ∇ϕVϕ(S)

θ ← θ + απ ∇θlog πθ(A |S) + η∇θH(πθ(⋅ |S))δ

Performance of IAC with Deep Neural Networks

• IAC fails to learn a good policy on these Mujoco environments

A robust incremental method that can leverage
deep neural networks for learning in real-time

remains an important open challenge

Goal

Our incremental algorithm may take longer to learn, but given enough time, it
should achieve the final performance of a sample-efficient batch method

We propose a novel incremental deep policy
gradient method — Action Value Gradient (AVG)—

which does not require batch updates,
target networks or a replay buffer

Policy gradients

∇θJ(θ) ∝ ∇θ ∫ dπ,γ(s) πθ(a |s)qπθ
(s, a) da ds

𝔼S∼dπ,γ, A∼πθ [∇θlog πθ(A |S) qπθ
(S, A)] 𝔼S∼dπ,γ, A∼πθ [∇θ fθ(ϵ; S) |ϵ=gθ(A;S) ∇Aqπθ

(S, A; ϕ)]
Likelihood Ratio Gradient

(Sutton et al., 1999)
Reparametrization Gradient

(Parmas et al., 2021, Lan et al. 2021)

Continuous
actions

REINFORCE
Actor Critic

??
DDPG
SAC
TD3

PPO
TRPO

ACKTR
Likelihood Ratio

Gradient

Reparametrization
Gradient

Incremental Batch

Action Value Gradient (AVG)

• Notably, AVG is the only existing incremental policy gradient method that uses
the reparametrization gradient estimator

← R + γ(Qϕ(S′￼, A′￼) − η log πθ(A′￼|S′￼)) − Qϕ(S, Aθ)

ϕ ← ϕ + αQ

θ ← θ + απ ∇θ(Qϕ(S, Aθ) − η log πθ(Aθ |S))

// Critic Update

// Actor Update

// TD Error

Aθ = fθ(ϵ; S) ϵ ∼ 𝒩(0,1) // Action Sampling

δ

∇ϕQϕ(S, Aθ)δ

Normalization and Scaling

• We use three normalization and scaling techniques in AVG

• Observation Normalization

• Normalization of the Penultimate Layer Feature Activations

• Scaling the Temporal Difference (TD) Error

• These techniques are essential for maintaining good learning dynamics, reducing instability,
improving plasticity, and resolving issues related to the scale of large bootstrapped targets

Step 1: Normalize Observations

•

• Estimate sample mean and std for observations

• Commonly used with PPO

obsnorm =
obs − μobs

σobs

Welford, B. (1962). Note on a method for calculating corrected sums of squares and products. Technometrics, 4(3):419–420.

Step 2: Penultimate Norm

• Simply setting penultimate features to unit norm (penultimate normalization)
can avoid exploding activations

•

• Penultimate features : Post-activations of last hidden layer

• Use for both Actor and Critic

ψ̂θ(S) =
ψθ(S)

∥ψθ(S)∥2

ψθ(S)

Bjorck, J., Gomes, C. P., & Weinberger, K. Q. (2022). Is high variance unavoidable in rl? a case study in continuous control. International Conference on Learning Representations.

https://scholar.google.com/scholar_url?url=https://arxiv.org/abs/2110.11222&hl=en&sa=T&oi=gsb&ct=res&cd=0&d=1950919355997491562&ei=B4qlZe_yJrSx6rQP-4Of0A4&scisig=AFWwaeaEweOQE96Fe__Lx7cDt0HL

Step 3: Return Scaling

•

• Scale TD error:

• Maintain a sample mean and std estimate for reward R, discount factor and
return G to estimate

σ2
δ = 𝕍[R] + 𝕍[γ]𝔼[G2]

δ =
δ
σδ

γ
σδ

Schaul, T., Ostrovski, G., Kemaev, I., & Borsa, D. (2021). Return-based scaling: Yet another normalisation trick for deep RL. arXiv preprint arXiv:2105.05347.

https://arxiv.org/abs/2105.05347

AVG is the only incremental method that learns effectively, often achieving final performance
comparable to batch policy gradient methods

A Tale of Large and
Noisy Gradients

Instability Without Normalization and Scaling

Huge gradient
norms!!

Hypothesis: Stable learning in streaming methods can be
achieved by balancing update magnitudes across time steps

and episodes, reducing the influence of outlier experience

Impact of normalization and scaling on policy gradient methods

AVG enabled us to show for the first time effective deep RL with real robots
using only incremental updates

Create-Mover Policy After 100K Steps (1x)

Reward: Moving Forward

Learned Solely on Onboard Computer (Jetson Nano)

UR-Reacher-2 Policy After 400K Steps (1x)

Reward: Distance Penalty + Precision Bonus

Thank You :)

github.com/gauthamvasan
https://gauthamvasan.github.io/ vasan@ualberta.ca

Discussion

• Why is incremental deep reinforcement learning important? What real life
problems and applications can it help us solve? (e.g., space)

• How can we be more sample efficient with incremental deep RL agents?

• How does it fit with continual learning? How can we have methods that
experience minimal forgetting?

• How can we maintain/encourage exploration in incremental methods?

Ablation Study of Normalization & Scaling Techniques

Does AVG benefit from target networks?

Alternatives to Penultimate Norm

Robot Experiments

