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I’m interested in agents that can learn on the fly,  
in real-time, by interacting with their environment 



Fun with Squirrels 🐿

• Real-time learning


• Learn through trial-and-error interactions with the 
environment


• React in milliseconds to achieve their goal



Real-Time Adaptation

iRobot RoombaMars Perseverance RoverApplication of an AR Headset Apple Watch

• In current AI systems, training and deployment are distinct phases, with the 
system frozen during deployment


• Learning online, in real-time, can enable such systems to adapt to unforeseen 
changes in dynamic environments


• Learning must occur on-device!



Agent-Environment Interaction in Reinforcement Learning (RL)
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Batch RL vs Streaming RL

• Batch RL methods sample a batch of data from the replay buffer and use it to make a learning update


• For example, Soft Actor Critic (SAC), Proximal Policy Optimization (PPO) and Twin Delayed DDPG (TD3) 


• In contrast, streaming RL methods learn incrementally by processing one sample at a time, without storing any samples


• For example, Actor Critic, Q( ) and Sarsa( )


• Streaming RL methods


• are computationally cheap and amenable to real-time updates


• support on-device learning, which is critical to preserving the privacy and security of the user

λ λ

Elsayed, M., Vasan, G., & Mahmood, A. R. (2024). Streaming Deep Reinforcement Learning Finally Works. arXiv preprint arXiv:2410.14606.

Note: 
I’m using incremental and 

streaming interchangeably in this 
talk
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Wang, Y., Vasan, G., & Mahmood, A. R. (2023, May). Real-time reinforcement learning for vision-based robotics utilizing local and remote computers. In 2023 IEEE International Conference on 
Robotics and Automation (ICRA) (pp. 9435-9441). IEEE.

“The real world does not pause while the agent 
computes actions or makes learning updates”
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Example: Vision-based Real-Time RL
Create-Reacher

Wang, Y., Vasan, G., & Mahmood, A. R. (2023, May). Real-time reinforcement learning for vision-based robotics utilizing local and remote computers. In 2023 IEEE International Conference on 
Robotics and Automation (ICRA) (pp. 9435-9441). IEEE.



Remote-Local Distributed Learning

Wang, Y., Vasan, G., & Mahmood, A. R. (2023, May). Real-time reinforcement learning for vision-based robotics utilizing local and remote computers. In 2023 IEEE International Conference on 
Robotics and Automation (ICRA) (pp. 9435-9441). IEEE.

Jetson Nano 4GB

Workstation  
(128GB RAM,  

12GB Nvidia 3090 GPU)

• Local device


• Policy inference 


• Store only Actor π

• Remote device


• Policy learning


• Store: Actor , Two 
Q networks, Target 
networks and Replay 
Buffer

πAsynchronous 
Batch RL



• Send an action every 45 milliseconds


• Replay buffer with 1M samples: ~40GB RAM


• Stacked RGB images (160 x 90 x 3)


• Proprioception 


• Policy inference time: 


• ~17ms on Jetson Nano


• Time per learning update (Batch size 256):


• Nvidia 3090Ti GPU: ~60-70ms


• Jetson Nano: >2s

Compute requirements 
for on-device learning Jetson Nano 4GB

Battery  
(20000 mAh)

Depstech 4K Camera

iRobot Create2



Batch deep RL methods like SAC are ill-suited for 
real-time on-device learning

Jetson Nano 4GB



Idea #1: Reduce the replay buffer size and use 
smaller batch updates that meet the resource 

constraints



Deep RL Methods Under Real-Time Learning Constraints

• 10M training steps


• Y-axis reports performance in the last 10K steps, averaged over 30 seeds 


• X-axis is in logarithmic scale



Deep RL Methods Under Real-Time Learning Constraints



Deep RL Methods Under Real-Time Learning Constraints



Deep RL Methods Under Real-Time Learning Constraints

• The learning performance of batch policy gradient methods degrades substantially 
when the replay buffer size is reduced from their large default values


• PPO, TD3 and SAC fail catastrophically when buffer size is reduced to 1



Idea #2: Use an existing 
incremental learning method



Incremental One-Step Actor Critic (IAC)

• IAC learns from a continuous stream 
of data, one sample at a time, 
without storing any samples


• It uses the likelihood-ratio gradient 
(LG) estimator


• It is computationally cheap


• Examples of real-time learning with 
linear function approximation

// TD Error





// Critic Update


 


// Actor Update


    

δ ← R + γVϕ(S′￼) − Vϕ(S)

ϕ ← ϕ + αV δ ∇ϕVϕ(S)

θ ← θ + απ ∇θlog πθ(A |S) + η∇θH(πθ( ⋅ |S))δ



Performance of IAC with Deep Neural Networks

• IAC fails to learn a good policy on these Mujoco environments



A robust incremental method that can leverage 
deep neural networks for learning in real-time 

remains an important open challenge



Goal

Our incremental algorithm may take longer to learn, but given enough time, it 
should achieve the final performance of a sample-efficient batch method



We propose a novel incremental deep policy 
gradient method — Action Value Gradient (AVG)— 

which does not require batch updates,  
target networks or a replay buffer



Policy gradients

∇θJ(θ) ∝ ∇θ ∫ dπ,γ(s) πθ(a |s)qπθ
(s, a) da ds

𝔼S∼dπ,γ, A∼πθ [∇θlog πθ(A |S) qπθ
(S, A)] 𝔼S∼dπ,γ, A∼πθ [∇θ fθ(ϵ; S) |ϵ=gθ(A;S) ∇Aqπθ

(S, A; ϕ)]
Likelihood Ratio Gradient


(Sutton et al., 1999)
Reparametrization Gradient


(Parmas et al., 2021, Lan et al. 2021)

Continuous 
actions
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Action Value Gradient (AVG)

• Notably, AVG is the only existing incremental policy gradient method that uses 
the reparametrization gradient estimator

← R + γ(Qϕ(S′￼, A′￼) − η log πθ(A′￼|S′￼)) − Qϕ(S, Aθ)

ϕ ← ϕ + αQ

θ ← θ + απ ∇θ(Qϕ(S, Aθ) − η log πθ(Aθ |S))

// Critic Update

// Actor Update

// TD Error

Aθ = fθ(ϵ; S) ϵ ∼ 𝒩(0,1) // Action Sampling

δ

∇ϕQϕ(S, Aθ)δ



Normalization and Scaling

• We use three normalization and scaling techniques in AVG


• Observation Normalization


• Normalization of the Penultimate Layer Feature Activations


• Scaling the Temporal Difference (TD) Error


• These techniques are essential for maintaining good learning dynamics, reducing instability, 
improving plasticity, and resolving issues related to the scale of large bootstrapped targets


 



Step 1: Normalize Observations

• 


• Estimate sample mean and std for observations


• Commonly used with PPO

obsnorm =
obs − μobs

σobs

Welford, B. (1962). Note on a method for calculating corrected sums of squares and products. Technometrics, 4(3):419–420.



Step 2: Penultimate Norm

• Simply setting penultimate features to unit norm (penultimate normalization) 
can avoid exploding activations 


• 


• Penultimate features : Post-activations of last hidden layer


• Use for both Actor and Critic

ψ̂θ(S) =
ψθ(S)

∥ψθ(S)∥2

ψθ(S)

Bjorck, J., Gomes, C. P., & Weinberger, K. Q. (2022). Is high variance unavoidable in rl? a case study in continuous control. International Conference on Learning Representations.

https://scholar.google.com/scholar_url?url=https://arxiv.org/abs/2110.11222&hl=en&sa=T&oi=gsb&ct=res&cd=0&d=1950919355997491562&ei=B4qlZe_yJrSx6rQP-4Of0A4&scisig=AFWwaeaEweOQE96Fe__Lx7cDt0HL


Step 3: Return Scaling

• 


• Scale TD error: 


• Maintain a sample mean and std estimate for reward R, discount factor  and 
return G to estimate 

σ2
δ = 𝕍[R] + 𝕍[γ]𝔼[G2]

δ =
δ
σδ

γ
σδ

Schaul, T., Ostrovski, G., Kemaev, I., & Borsa, D. (2021). Return-based scaling: Yet another normalisation trick for deep RL. arXiv preprint arXiv:2105.05347.

https://arxiv.org/abs/2105.05347


AVG is the only incremental method that learns effectively, often achieving final performance 
comparable to batch policy gradient methods





A Tale of Large and 
Noisy Gradients



Instability Without Normalization and Scaling

Huge gradient 
norms!!



Hypothesis: Stable learning in streaming methods can be 
achieved by balancing update magnitudes across time steps 

and episodes, reducing the influence of outlier experience



Impact of normalization and scaling on policy gradient methods



AVG enabled us to show for the first time effective deep RL with real robots 
using only incremental updates

Create-Mover Policy After 100K Steps (1x)


Reward: Moving Forward


Learned Solely on Onboard Computer (Jetson Nano)

UR-Reacher-2 Policy After 400K Steps (1x)


Reward: Distance Penalty + Precision Bonus



Thank You :)

github.com/gauthamvasan
https://gauthamvasan.github.io/ vasan@ualberta.ca



Discussion

• Why is incremental deep reinforcement learning important? What real life 
problems and applications can it help us solve? (e.g., space)


• How can we be more sample efficient with incremental deep RL agents?


• How does it fit with continual learning? How can we have methods that 
experience minimal forgetting?


• How can we maintain/encourage exploration in incremental methods?



Ablation Study of Normalization & Scaling Techniques



Does AVG benefit from target networks?



Alternatives to Penultimate Norm



Robot Experiments




