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About this work

[2019] Stumbled on this problem while finishing my PhD @ CMU
= NO progress

[2020] Had this problem again at Tempus Al
= designed a primitive, domain-specific solution

[2022] Created a general-but-fragile solution
= rejected by TMLR

[2024] Created a simpler-and-better solution
= accepted by TMLR

McCarter, C. Towards Backwards-Compatible Data with Confounded Domain Adaptation. Transactions on Machine Learning
Research. 2024. [paper] [code]


https://openreview.net/pdf?id=GSp2WC7q0r
https://github.com/calvinmccarter/condo-adapter

Al for biology: the problem of data heterogeneity

Protein structure prediction:
- homogeneous data
- distance measurements are absolute

Most other biological datasets:

- heterogeneous data

- relative measurements (eg gene
expression)




Example 1: batch effects

Technical differences among datasets due to different protocols
Sponge microbiome data (PCA plot): Tissue (tt)  Gel (batch)
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Sacristan-Soriano, Oriol, Bernard Banaigs, Emilio O Casamayor, and Mikel A Becerro. 2011. “Exploring the Links Between Natural Products and Bacterial Assemblages in the Sponge Aplysina Aerophoba.” Applied

and Environmental Microbiology 77 (3). Am Soc Microbiol: 862—70.
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Example 2: multi-omics alignment

Technical differences among datasets due to different experiments

Closed chromatin Open chromatin

- 19 dimensional ATAC-seq

- 10 dimensional RNA-seq ==
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Chen, Song, Blue B. Lake, and Kun Zhang. "High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell
1452-1457.

." Nature biotechnology 37, no. 12 (2019):



Domain adaptation methods

e Model training methods (improving robustness to irrelevant variation)

e Data transformation methods (matching distributions)

o sample reweighting
o feature transformation

Our goal:

Estimate what the features would have looked like, had they been obtained using
the same technical process as the reference dataset.



Domain adaptation notation

° features (i.e. CovariateS): X € X real-valued vectors: Tg € RMS’ T c RMT

" confounding variables: Z € Z user-specified confounder-space kernel function kz(z(™), z(n2))

o other variables to predict, given features: Y € Y
A joint distribution over covariate space X and confounder space Z is called a domain D.

e We consider two domains: source domain Dg and target domain Dy.
B Dgf , Dj)f denote the marginal distributions of covariates under the source and target domains.
B Dg ; D% denote the corresponding marginal distributions of confounders.

Also assume:

e Ng samples from source, N7 samples from target



Affine domain adaptation: Gaussian optimal transport

The optimal transport map under the type-2 Wasserstein metric for

x~N(us,Es) to  N(pr,Xr)

IS:
x> pr+ Alx — ps) = Az + (ur — Apg), where
=]’ 1 1 1/2 -1
A=3,"(sfsrsl) "5 = AT,
Observe:

e All you need are samples to estimate the means and covariances.
e This also minimizes the Gaussian KL divergence.



Affine domain adaptation: MMD

Given the Gaussian kernel for feature-space vectors,
w12
(o, /) = exp ( — 125301)
the maximum mean discrepancy (MMD) loss is O iff the distributions are identical:
MMD2 (DT7 DS) :]Ea:(nl),m(nl)lm’DT kX (w(n1)7 m(nl)/)
— 2Em(n1)NDT,m(n2)N'DS kx (w(nl), Az(™2) 4 b)
4 Em(n2),m(n2),NDS kX(Aw('nQ) 4 b, Aw(nZ)/ n b).

Given source and target datasets, you can optimize this via sampling.



The problem of confounding

When "what you measure" and "how you measure it" are confounded:

Source
V1 training data V2 training data
/\ B
X
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X
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x X Z
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X i e covariate shift
(g < <
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& Q@Q e label shift
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individuals)

Target

V2 test data

X £ Y

e AdaptV2to V1
e Predict seizure

e Predict depression
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How confounding ruins domain adaptation

Feature

100
75
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« source: batch-effected

« source: true (unobserved)
« source: Gaussian OT
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Domain adaptation settings (1)

Name Shift Assumed Invariant
Covariate Shift DX £DX Vze X,Ds(Z|X =z) =Dr(Z|X = x)
Label Shift Dg = D% Vz € 2, Ds(X|Z = 2) =Dr(X|Z = 2)

Covariate shift = feature transformation methods
Label shift = sample reweighting methods
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Domain adaptation settings (2)

Name Shift Assumed Invariant

Covariate Shift DX £Dx Vze X,Dg(Z
Label Shift DZ #£DZ Vze Z,Dg(X

X =2)=Dp(Z|X =x)
Z =2)=Dr(X|Z = 2)

Generalized Label Shift DZ #DZ Vze Z,Ds(9(X)|Z = 2z) = Dr(g(X)|Z = 2)

Confounded Shift DZ £DZ Vze Z,Dg(X

Z = z) =Dr(9(X)|Z = 2

Confounded Shift and Generalized Label Shift coincide with:

g({XaD}):{X D—

Generalized Label Shift:

9(X) D=T

S

Tachet des Combes, Remi, et al. "Domain adaptation with conditional distribution matching and generalized label shift." Advances in Neural

Information Processing Systems 33 (2020): 19276-19289.
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Towards backwards-compatible data

Source Target
V1 training data V2 training data V2 test data
/\ B
X
< 8 g S
o | 7
oI 3
x
*
X X Z X ZYy
x |k .
- e covariate shift e AdaptV2to V1
2 NS & N
Ob & Q?e‘ (V1 vs V2) e Predict seizure
Q(," @ QQ§ e label shift e Predict depression
(mostly healthy
X Z Y

individuals)

We might be unable to update downstream models.
Confounder value is possibly unknown at test time.
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Using backwards-compatible data

Source Target
V1 training data V2 training data V2 test data
>
X
< 8 ey Sy
X [ ?
2 4
X *
X
*
x X Z X ZY
*
X _ e covariate shift e Adapt V2 to V1
g & S . .
06"’ é\)’ & (V1 vs V2) e Predict seizure
<
q‘," @ Qﬁ e label shift e Predict depression
(mostly healthy
X Z Y i
individuals)

Unknown shift: g7+

Assume:  ppg(Y|X) = pp,(Y]9(X))
Downstream prediction model: h: Xg — Y
Estimated transformation:  §: Xr — Xg




Confounded domain adaptation

minE, 5 d(DT(m|Z — 2), Ds(fo(x)|Z = z))

0

Minimizes the expected divergence between conditional distributions
Requires 4 ingredients:

e a feature-space transformation fg: X — X
e a prior confounder distribution Dy,
o a conditional generative model for D.(x|Z = z2)

o a distance/divergence function d
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Feature-space transformation

minE, 5, d(DT(:I:lZ — 2), Ds([fo(®)| Z = z))

We restrict ourselves to linear transforms in this work:

e affine Ax+b

e |ocation-scale A = diag(a)
(requires same dimensionality)
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Prior confounder distribution (1)
minE; 5 d(Dr(@|2 = 2), Ds(fo(®)|Z = 2))
We can be flexible since Dr(X|Z) =Ds(X|Z) = Dr(X|Z =2) =Ds(X|Z =2) Vz

Goal: minimize the distance between conditional distributions only where we can
estimate them with high accuracy.

ldea: sample from the product of Dg and 'D%
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Prior confounder distribution (2)

H}ien d(DT(a:|Z = 2),Ds(fo(x)|Z = z))

Compute the kernel density estimators DZ and DZ
NZ .— PZ « DZ

Choose D5 :=Dg x D7

Reweight all observed values by ﬁg :

Np
Z 'w(n)d ng”)) + Z 'w:(pn)d(z - Zé«n)), where

) T kel(2y, 257 S kz (28, 28")

Wg " Ns B ol N @ L)y 0
i S k2(28),29) T T S kz (29, 29)

W) o T k(25 21") St kz(2p), Z5")

3 ~— X z ——
i S ke (0,29 D S ke (20, 2D

19



Sampling from conditional distributions

minE, 5 d(DT(:c|Z = 2),Ds(fo(x)|Z = z))

0

For each given value of z, we generate K 5 samples for source and target

e But z might not show up in both source and target datasets

e But effect of zon x might be non-linear and uncertain

= Learn, then sample from, generative models for features | confounder
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Sampling from conditional distributions (details)

min]EZN,bZ d DT(mIZ — Z),Ds(fg(w)|z = Z)

0

Conditional generative modeling is multiple imputation.
We concatenate the original dataset and a second copy with all features masked and all
confounder(s) unmasked.
e \We use MICE-Forest imputation (Wilson, 2022)
o Multiple imputation with chained equations (MICE) (Van Buuren et al, 1999) is a leading
method.
o Gradient-boosted decision trees (Ke et al, 2017) flexibly handle tabular data.

Van Buuren, Stef, Hendriek C. Boshuizen, and Dick L. Knook. "Multiple imputation of missing blood pressure covariates in survival analysis." Statistics in medicine 18.6 (1999): 681-694.
Wilson, Samuel Von, Cebere, Bogdan, Myatt, James, & Wilson, Samuel. 2022 (Dec.). AnotherSamWilson/miceforest: Release for Zenodo DOI.

Ke, Guolin, Meng, Qi, Finley, Thomas, Wang, Taifeng, Chen, Wei, Ma, Weidong, Ye, Qiwei, & Liu, Tie-Yan. 2017. Lightgbm: A highly efficient gradient boosting decision tree. Advances in
neural information processing systems.
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Measuring divergences between distributions

minE, 5, @(DT(:B|Z — 2), Ds(fo(x)|Z = z))

1. For each z, obtain KXy samples from each of the source and target domains.
2. Return a scalar distance / divergence.

e (Gaussian KL divergence
e Maximum mean discrepancy (MMD)

e Others are possible!
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Gaussian KL divergence

For each value drawn from the confounder prior, use K y samples to estimate
the mean and covariance matrix of features at that value.

Forward KLD: d(P, Q) = dg(P||@)
Reverse KLD: d(P, Q) = dgr(Q||P)

N
IE? —2log (| det(A)|) + ;wn * tr(Eéf’)_lAzgn)AT)

(a0 ?) 50 (a0
Benefits of reverse KLD:

e Preserves sign of the determinant of A
e Requires only a single matrix inversion per sample
e Closed-form solution for location-scale transformation
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Conditional maximum mean discrepancy

For a particular z, the conditional MMD loss is:

d(DT(-|Z = 2),Ds(-|Z = z)) .=MMD?(Dr(-|Z = 2), Ds(-|Z = 2))

B0 1) (7= e (2, 2™

— 2]Eﬂ3("1)~'DT(-|Z=z),m("2)~DS(.|Z:z)k,\{(m(nl), Am(n2) + b)
T Ew("”,m(”2)'~’Ds('|Z:z)kX(Aw(nz) +b, Az 1 b).
Stochastic optimization:
e Sample K z values from the confounder prior with replacement.

e Foreach z value, sample K y vectors to estimate the conditional MMD loss.
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Software

condo-adapter

ConDo Adapter performs Confounded Domain Adaptation, which corrects for batch effects
while conditioning on confounding variables. We hope it sparks joy as you clean up your data!

Installation

Installation from pip

You can install the toolbox through PyPI with:

pip install condo ©

import condo
condo_adapter = condo.ConDoAdapterMMD(transform_type='affine')
condo_adapter.fit(Xs, Xt, Zs, Zt)
X_s2t = condo_adapter.transform(Xs)
25



Experiments

e Synthetic data
o 1d features with 1d continuous confounder
o 1d features with multi-dimensional continuous confounders
o 1d and 2d features with categorical confounders

e Hybrid data

o ANSUR Il anthropometric survey data
o Image color adaptation

e Real data
o  California housing price prediction

o  SNARE-seq multi-omics alignment
o Gene expression batch effect correction
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Multi-omics alignment revisited

Technical differences among datasets due to different experiments

Closed chromatin Open chromatin

- 19 dimensional ATAC-seq

- 10 dimensional RNA-seq ==

MDS on source domain

cell-type cell-type
- GM - GM
< B - B
- K562 K562
- Hl « Hl
g assay o assay
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c c
s 0 S
o Q
£ £
o o
o o
=1
-1 0 1 -1 0 1
component 1 component 1

Chen, Song, Blue B. Lake, and Kun Zhang. "High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell
1452-1457.

." Nature biotechnology 37, no. 12 (2019):
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Cell-type annotation improves domain adaptation

Cell-type data improves overlap between RNAseq (0) and ATACseq (x):

component 2

MDS after MMD

component 1

cell-type
GM

B

K562

H1
assay
RNAseq
ATACseq

component 2

MDS after ConDo-MMD

component 1

cell-type
GM

BJ

K562

H1
assay
RNAseq
ATACseq
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Accuracy

Paired-cell information improves domain adaptation

500 ATAC-seq samples + C (RNA-seq, ATAC-seq) pairs, with C' € {5, 10, 20, 50, 100}

Train cell-type classifier on ATAC-seq, then evaluate on RNA-seq,.
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Feature

1d feature, 1d continuous confounder
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Robustness to multiple types of shift (1)

100 |
75 r
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25 r

linear homoscedastic

linear heteroscedastic

nonlinear heteroscedastic
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Robustness to multiple types of shift (2)

rMSE

rMSE

15 A

10 A

15 A

10 A

NoiseFree TargetShift FeatureShift

Noisy TargetShift FeatureShift
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1d feature, multiple continuous confounders

3 settings: linear homoscedastic, linear heteroscedastic, nonlinear heteroscedastic
(A) Extra irrelevant N(0,1) confounders

rMSE
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(B) Noisy additive decomposition
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Image color adaptation - no confounding

Treat each image as a (# pixels, 3) dataset

Original Images
Day Sunset

Gaussian OT
Day — Sunset Day «— Sunset

MMD
Day — Sunset Day «— Sunset

ConDo segmentation
Day pixel labels Sunset pixel labels

ConDo Gaussian KLD
Day — Sunset Day «— Sunset

ConDo MMD
Day — Sunset Day «— Sunset
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Image color adaptation - confounding

Treat each image as a (# pixels, 3) dataset

Original Images

Day — Beach

Gaussian OT

Day «— Beach

ConDo segmentation
Day pixel labels Beach pixel labels

ConDo Gaussian KLD
Day — Beach Day «— Beach

ConDo MMD
Day — Beach Day «— Beach
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ANSUR Il anthropometric data (1)

93 anthropometric measurements (e.g. wrist height) from 6068 military personnel
Source: random subsample of 500 with a 75%-25% male-female split
Target: random subsample of 500 with a 25%-75% male-female split

A =Udiag(d)V'" d; ~ Unif[0.5,2] U, V~ Haar distributed

Confounder variable: Male vs Female
Prediction models, trained on source:
e Male vs Female
e Height greater than median
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ANSUR Il anthropometric data (2)

Downstream prediction performance:

Gender Height > 5ft6in

Source
Target (pre-feature shift)
Target (post-feature shift)

Gaussian OT

MMD
ConDo Gaussian KLD
ConDo MMD
ofo 012 0j4 016 Oi8 1j0 OiO 012 014 0j6 0j8 1io
Accuracy Accuracy
True mapping parameter recovery: Satesian OT
MMD

ConDo Gaussian KLD

ConDo MMD

llo-bil, IA-AI,
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Limitations

e Assumes access to all confounders at training time
e Assumes a deterministic (and linear) transformation between features
e Despite assumptions, the true transformation is non-identifiable

e Using transformed data for downstream task assumes that conditional
distribution of the target variable given features is the same for source and
target
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Future work

e Optimal transport distance
e Constraints (e.g. non-negative) and regularization
e Nonlinear adaptations parameterized by neural networks

e Theoretical guarantees
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Thanks!

Questions?

Please feel free to reach out: mccarter.calvin@gmail.com

McCarter, C. Towards Backwards-Compatible Data with Confounded Domain Adaptation. Transactions on Machine
Learning Research. 2024. [paper] [code]
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Partially-observed confounding

Noisy additive decomposition
3 settings: linear homoskedastic, linear heteroscedastic, nonlinear heteroscedastic
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True transformation recovery - 2d data, 1d confounder

No Confounding

Confounded Confounded - Random Transform

Gaussian OT
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ConDo Gaussian KLD

ConDo MMD
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