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Contextual Feedback Loops
Amplifying Deep Reasoning
with Iterative Top-Down

Feedback



Feedback Mechanisms

Your Brain is not a Strictly Feedforward Mechanism
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Human brains are made up of about 60% connections.
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Feedback Mechanisms

Fire and Pain: Learning Through Feedback

When you get burned, your brain uses signals to correct mis-
takes and avoid touching fire in the future. This learning process is
guided by constant error-checking and adapting to new information.
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Feedforward Networks

The Single Pass Dilemma — Feed Forward Networks

Standard neural networks rely on a single forward pass—
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Challenges

Related: Predictive Coding & Generative Feedback

Prediction Prediction Prediction

e Predictive Predictive Predictive
P estimator estimator estimator

Overly optimistic model assumptions.
High computational complexity.

Limited empirical evidence.

These models lack contextual grounding, performance on
benchmarks, and high memory/compute requirements.
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Perception

Stop Signs and Context

A
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You don't actually read the stop sign—you recognize it

by its context: its placement, distinctive color, and shape.
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Iterative Feedback

Iterative Feedback in Action

When you see a Ford Explorer on the side of the road, you might
initially mistake it for a cop. But by checking for details—like the
push bumper, the lights on top, and other distinct markers—you it-
eratively refine your expectation until your hypothesis is corrected.
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Iterative Refinement

Fixed Point lteration & Banach’s Theorem

Iterative refinement can be viewed as repeatedly applying a function until
convergence. Under the Banach fixed point theorem, if that function is a
contraction, the iteration is guaranteed to converge to a unique fixed point.
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Contextual Feedback Loops

A Contextual Feedback Loops Framework

Feedforward

Context

This framework merges feedforward signals with top-down context and
iterative steps, allowing each layer to refine its representation
over multiple passes instead of relying on a single forward propagation.
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Training and Inference

Contextual Feedback Loops: Training vs. Inference

Legend

——»  Forward Pass

-~ --» Feedback Pass

Repeat for 7 =0,1,..., 7.

During training, each top-down iteration refines the
model’'s parameters to reduce error, while at inference time,
the same iterative process helps the network converge on a
stable representation that aligns with the input and context.
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RESTIS

Per-Layer Analysis on CIFAR-10

CIFAR-10 KL Divergence vs. Refinement Steps (T=8) CIFAR-10 MSE vs. Refinement Steps (T=8)
0.0200
Layer 1 Layer 1
Layer 2 Layer 2

Layer 3 00175 Layer 3

0.0150
0.0125
w
& 0.0100

=
0.0075

o
o
c
]
o
2
]
2
Q
o
X

0.0050
0.0025

0.0000

4 5 6
Refinement Step Refinement Step

The left image shows the KL divergence per layer on CIFAR-10, while the
right displays the MSE per layer. These metrics indicate that our feed-
back loops balance divergence and reconstruction error at each layer.
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RESTIS

Overall Performance:

CIFAR-10, ImageNet, and Speech
Commands

Runl Run2 Run3 Rund4 RunS5

CNN 75. 754 74.8 76.0 75.3
FeedbackCNN  79.2 78.7

79.9 79.6 80.1
FLOPs (G)

17.5
224
61.7
78.2
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Our approach drastically improves accuracy on CIFAR-10
and ImageNet. We also see significant gains on the Speech
Commands dataset, demonstrating broad applicability.
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RESTIS

Ablation Study

Ablation: Accuracy vs. 7
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The ablation study highlights how different parameter set-
tings affect performance. Small changes yield significant differ-
ences, underscoring the importance of our model’s design choices.
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Conclusion

Conclusion and Future Directions

We achieve drastic improvements in accuracy with only a slight
overhead. Although | currently lack the computational resources to
fully explore these avenues, this approach shows great promise for

scaling to large language models and generative models in the

future.
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The FFT Strikes Back



FFTNet

Introduction to FFTNet

FFTNet: A new project that mixes tokens using
the Fast Fourier Transform.

Scalability: Scales much better than standard self-attention.

Efficiency: Achieves in time.
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FFTNet

Motivation & Convolution Theorem

Key Idea: Convolution in the Token (Time) Domain
Multiplication in the Frequency Domain.

can be seen as a form of global mixing with
O(n?) complexity.
By moving to the frequency domain, we leverage the
convolution theorem to handle these interactions more
cheaply:

Convolution +—

Result: We obtain global mixing in O(nlog n) vs. O(n?) for
standard self-attention.
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FFTNet

Global Token Mixing with FFT

A Fourier Transform decomposes a sequence of tokens into
waves at different

arise by combining tokens at all
frequencies, revealing overall patterns.

N—-1
Xe=> xaem N (k=0,...,N-1).
n=0

Efficient algorithm (O(N log N)) for computing the DFT.
Enables global token mixing in large sequences.
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FFTNet

Parseval’'s Theorem and Self-Attention

Parseval’s Theorem:

N—1 1 N1
Y bl = % 31Xl
n=0 k=0
Equates (sum of squares) in time domain with that in

frequency domain.

, meaning no global information is
lost under the transform.

Connection to Self-Attention:
In , token interactions rely on dot products.

implies that moving to frequency space
retains these

20/29



FFTNet

Overview

Goal: Efficiently capture both and token
interactions.

FFT: Summarizes patterns in O(N log V).
Wavelets: Zooms in on details.

Hybrid: Combines both for multi-scale context.

In self-attention, the dot product between tokens measures
how much each token attends to every other token.
Preserving inner products under the transform means
FFT-based mixing retains these same similarities, thereby
mimicking global self-attention.
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FFTNet

FFT (Global Mixing)

Discrete Fourier Transform (DFT):

Xy = an i (k=0,...,N—1).

Intuition:
Each token xj, is broken down into components.
Reveals periodic patterns spanning the entire sequence.

FFT is a fast algorithm (O(N log N)) to compute these
components.
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FFTNet

Wavelets (Local Mixing)

Wavelet Function:

banlt) = =222,

>

where a is position, b is scale.

Intuition:
1 is a short, localized wave that over the sequence.
Adjusting b changes how or the analysis is.
Ideal for detecting features or abrupt changes.
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FFTNet

Combining Global and Local

FFT: Captures
Wavelets: Capture

Result: A representation leveraging both:

Long-range patterns,
Fine-grained details
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FFTNet

Architecture Diagram
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FFTN

Results

et

Performance: FFTNet achieves slightly better performance
than standard self-attention.

Benchmarks:

Comparison: Outperforms both standard self-attention and
the baseline FNet.

Key Advantage: Adaptive modulation in the frequency
domain allows dynamic token mixing, some studies suggest
that operating in the frequency domain allows for better
expressivity.
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FFTNet

Results

FFT] 0-Windowing) FFTNe ‘With Windowing)
Variant FLOPs  Top-1 (%) Top-5(%)  FLOPs  Top-1(%) Top-5(%)  FLOPs Top-1(%) Top-5(%)

Base 22.64 9491 0.1% 22.64 5.4 . 65 79.4 94.8
Large 79.92 b 96.21 0. 79.92 5% . .3% .18 81.8 96.0
Huge 166.14 3% 96.81 0.2% 166.14 5% 91 0.3%  261.39 829 96.6

Model | ListOps Text Retrieval Image Pathfinder Path-X | Avg.

Transformer 36.06  61.54 59.67 41.51 80.38 OOM | 55.83
FNet 3533  65.11 59.61 38.67 77.80 FAIL | 55.32
FFTNet (No-Windowing) 37.65  66.01 60.21 42.02 80.71 83.25 | 58.31
FFTNet (With Windowing) | 38.02  66.25 60.64 42.45 80.99 83.64 | 58.83
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FFTNet

Latency Comparison

Latency vs Batch Size: FFTNetViT vs Standard ViT

—e- Base (FFTNetViT)
—m— Base (ViT)
Large (FFTNetViT)
Large (ViT)
~e- Huge (FFTNetViT)
—=— Huge (ViT)

Batch Size

Latency: FFTNet demonstrates lower latency compared to
standard self-attention, enabling : 2829



FFTNet

Conclusion & Future Work

Conclusion: FFTNet demonstrates that global token mixing
can be achieved in O(nlog n) without losing model capacity.
Future Directions:

Explore higher-dimensional FFTs for spatial-temporal data.
Investigate alternative nonlinear functions in the frequency

domain.
Apply FFTNet blocks to large-scale language modeling and

video tasks.
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