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Contextual Feedback Loops
Amplifying Deep Reasoning

with Iterative Top-Down
Feedback
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Feedback Mechanisms

Your Brain is not a Strictly Feedforward Mechanism

Human brains are made up of about 60% feedback connections.
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Feedback Mechanisms

Fire and Pain: Learning Through Feedback

When you get burned, your brain uses feedback signals to correct mis-
takes and avoid touching fire in the future. This learning process is
guided by constant error-checking and adapting to new information.
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Feedforward Networks

The Single Pass Dilemma — Feed Forward Networks

Feedback?

Standard neural networks rely on a single forward pass—Feedback?
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Challenges

Related: Predictive Coding & Generative Feedback

▶ Overly optimistic model assumptions.
▶ High computational complexity.
▶ Limited empirical evidence.

These models lack contextual grounding, performance on
benchmarks, and high memory/compute requirements.
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Perception

Stop Signs and Context

You don’t actually read the stop sign—you recognize it
by its context: its placement, distinctive color, and shape.
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Iterative Feedback

Iterative Feedback in Action

When you see a Ford Explorer on the side of the road, you might
initially mistake it for a cop. But by checking for details—like the

push bumper, the lights on top, and other distinct markers—you it-
eratively refine your expectation until your hypothesis is corrected.
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Iterative Refinement

Fixed Point Iteration & Banach’s Theorem

Iterative refinement can be viewed as repeatedly applying a function until
convergence. Under the Banach fixed point theorem, if that function is a

contraction, the iteration is guaranteed to converge to a unique fixed point.
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Contextual Feedback Loops

A Contextual Feedback Loops Framework

This framework merges feedforward signals with top-down context and
iterative feedback steps, allowing each layer to refine its representation
over multiple passes instead of relying on a single forward propagation.
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Training and Inference

Contextual Feedback Loops: Training vs. Inference

During training, each top-down feedback iteration refines the
model’s parameters to reduce error, while at inference time,
the same iterative process helps the network converge on a
stable representation that aligns with the input and context.
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Results

Per-Layer Analysis on CIFAR-10

The left image shows the KL divergence per layer on CIFAR-10, while the
right displays the MSE per layer. These metrics indicate that our feed-
back loops balance divergence and reconstruction error at each layer.
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Results

Overall Performance: CIFAR-10, ImageNet, and Speech
Commands

Our approach drastically improves accuracy on CIFAR-10
and ImageNet. We also see significant gains on the Speech

Commands dataset, demonstrating broad applicability.
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Results

Ablation Study

The ablation study highlights how different parameter set-
tings affect performance. Small changes yield significant differ-

ences, underscoring the importance of our model’s design choices.
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Conclusion

Conclusion and Future Directions

We achieve drastic improvements in accuracy with only a slight
overhead. Although I currently lack the computational resources to
fully explore these avenues, this approach shows great promise for

scaling to large language models and generative models in the
future.
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FFTNet

The FFT Strikes Back
An Efficient Alternative to Self-Attention
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FFTNet

Introduction to FFTNet

▶ FFTNet: A new project that efficiently mixes tokens using
the Fast Fourier Transform.

▶ Scalability: Scales much better than standard self-attention.
▶ Efficiency: Achieves global token mixing in O(n log n) time.
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FFTNet

Motivation & Convolution Theorem

Key Idea: Convolution in the Token (Time) Domain
Corresponds to
Multiplication in the Frequency Domain.

▶ Self-attention can be seen as a form of global mixing with
O(n2) complexity.

▶ By moving to the frequency domain, we leverage the
convolution theorem to handle these interactions more
cheaply:

Convolution ←→ Element-wise Multiplication in Fourier Space.

▶ Result: We obtain global mixing in O(n log n) vs. O(n2) for
standard self-attention.
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FFTNet

Global Token Mixing with FFT

Key Idea:
▶ A Fourier Transform decomposes a sequence of tokens into

waves at different frequencies.
▶ Global interactions arise by combining tokens at all

frequencies, revealing overall patterns.
Discrete Fourier Transform (DFT):

Xk =
N−1∑
n=0

xn e−i 2πk n/N (k = 0, . . . ,N − 1).

FFT:
▶ Efficient algorithm (O(N log N)) for computing the DFT.
▶ Enables fast global token mixing in large sequences.
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FFTNet

Parseval’s Theorem and Self-Attention

Parseval’s Theorem:
N−1∑
n=0
|xn|2 = 1

N

N−1∑
k=0
|Xk |2.

▶ Equates energy (sum of squares) in time domain with that in
frequency domain.

▶ Preserves inner products, meaning no global information is
lost under the transform.

Connection to Self-Attention:
▶ In self-attention, token interactions rely on dot products.
▶ Parseval’s Theorem implies that moving to frequency space

retains these similarities.
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FFTNet

Overview

▶ Goal: Efficiently capture both global and local token
interactions.

▶ FFT: Summarizes long-range patterns in O(N log N).
▶ Wavelets: Zooms in on short-range details.
▶ Hybrid: Combines both for multi-scale context.
▶ In self-attention, the dot product between tokens measures

how much each token attends to every other token.
Preserving inner products under the transform means
FFT-based mixing retains these same similarities, thereby
mimicking global self-attention.
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FFTNet

FFT (Global Mixing)

Discrete Fourier Transform (DFT):

Xk =
N−1∑
n=0

xn e− i 2πkn
N (k = 0, . . . ,N − 1).

Intuition:
▶ Each token xn is broken down into frequency components.
▶ Reveals broad periodic patterns spanning the entire sequence.
▶ FFT is a fast algorithm (O(N log N)) to compute these

components.
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FFTNet

Wavelets (Local Mixing)

Wavelet Function:

ψa,b(t) = 1√
b
ψ

( t − a
b

)
,

where a is position, b is scale.
Intuition:
▶ ψ is a short, localized wave that slides over the sequence.
▶ Adjusting b changes how zoomed in or out the analysis is.
▶ Ideal for detecting local features or abrupt changes.
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FFTNet

Combining Global and Local

▶ FFT: Captures global context.
▶ Wavelets: Capture local nuances.
▶ Result: A multi-scale representation leveraging both:

▶ Long-range patterns,
▶ Fine-grained details.
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FFTNet

Architecture Diagram
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FFTNet

Results

▶ Performance: FFTNet achieves slightly better performance
than standard self-attention.

▶ Benchmarks:
▶ ImageNet
▶ Long Range Arena

▶ Comparison: Outperforms both standard self-attention and
the baseline FNet.

▶ Key Advantage: Adaptive modulation in the frequency
domain allows dynamic token mixing, some studies suggest
that operating in the frequency domain allows for better
expressivity.

26 / 29



FFTNet

Results
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FFTNet

Latency Comparison

Latency: FFTNet demonstrates lower latency compared to
standard self-attention, enabling faster inference. 28 / 29



FFTNet

Conclusion & Future Work

▶ Conclusion: FFTNet demonstrates that global token mixing
can be achieved in O(n log n) without losing model capacity.

▶ Future Directions:
▶ Explore higher-dimensional FFTs for spatial-temporal data.
▶ Investigate alternative nonlinear functions in the frequency

domain.
▶ Apply FFTNet blocks to large-scale language modeling and

video tasks.
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