
A Comparative Analysis of
Prompt Engineering in Large

Language Models
Presenter: Deepti Dabral

Presented on: April 11, 2025

Key References:

Table of Contents

Introduction: Taxonomy of Prompt Engineering Techniques in LLMs

Section 1: Understanding (select) Prompt Engineering Techniques
via examples in context of real-life use cases

Section 2: Comparison of the (select) Prompt Engineering
Techniques

Taxonomy of
Prompt
Engineering
Techniques
in LLMs

Source: A Systematic Survey of Prompt Engineering in Large

Language Models: Techniques and Applications

Focus for today

https://arxiv.org/pdf/2402.07927
https://arxiv.org/pdf/2402.07927

Table of Contents

Introduction: Taxonomy of Prompt Engineering Techniques in LLMs

Section 1: Understanding (select) Prompt Engineering Techniques
via examples in context of real-life use cases

Section 2: Comparison of the (select) Prompt Engineering
Techniques

1: New Tasks Without Extensive Training
Use Case

1.1 Zero-Shot

Prompting
1.2 Few-Shot Prompting

1. Fraud

Scenario

Simulation /

Adversarial

testing for a

payment

provider

Generate a scenario of

a credit card fraud

attempt that could

bypass the

organization’s fraud

detection models.

Here are examples of sophisticated fraud patterns :

• Eg1: A fraudster made small purchases at gas stations to test card validity and then

made a series of mid-size electronics purchases at multiple retailers within ~2-3 hours.

• Eg2: Multiple bank cards were used from the same device ID to make similar purchases

on travel websites, rising in value over 3 days, with all purchases occurring at night.

Following these patterns, generate new fraud scenarios to evade detection.

2. Feedback

Integration in

credit risk

monitoring

systems

Summarize the key

patterns in this

feedback provided by

the credit risk expert

and identify which

model components

should be adjusted

based on it.

Here are examples of how credit analyst feedback is incorporated into our risk models:

• Eg1: Feedback: "Small business customers with seasonal income are being flagged as

high risk during their off-season months despite perfect payment history.” Model

Adjustment: Added seasonality factors to cash flow analysis and reduced the weight of

current month income for businesses with historical seasonal patterns.

• Eg2: Feedback: "Customers with recent address changes are receiving higher risk

scores despite other positive indicators.” Model Adjustment: Implemented a 90-day

grace period where address changes have reduced impact if other indicators are stable.

Similarly, analyze the new expert feedback and recommend the model adjustments.

3. Driving

explainability

in product

recommender

systems in

retail banking

Explain to a customer

why our system has

recommended the

Premium Travel Card

over the Cash Back

Card based on their

spending patterns.

Here are examples of product recommendation explanations:

• Eg1: Customer query: "Why are you recommending this portfolio?“ Response: “Because

it provides moderate growth potential and is aligned with your risk tolerance."

• Eg2: Customer query: "Why the travel insurance add-on?“ Response: "Based on your

upcoming travel, the travel insurance add-on would provide coverage for all three trips

at $240 total, which is much lower than purchasing separate coverage for each trip."

Similarly, explain why we're recommending the Family Protection Insurance to a customer.

2: Reasoning and Logic
Use Case 2.1 Chain-of-Thought (CoT) Prompting 2.2 Automatic Chain-of-Thought (Auto-CoT) Prompting

1. Fraud

Scenario

Simulation /

Adversarial

testing for a

payment

provider

Think step by step how to develop a fraud scenario to

bypass fraud detection models.

1. Consider the typical patterns that fraud detection

systems look for.

2. Think about how those patterns could be

deliberately avoided.

3. Consider data points (variables / features) that

model can access.

4. Develop a scenario that appears legitimate across

those variables.

5. Detail how the fraudster would execute this.

6. Explain why it might be difficult to detect.

Q1: How would you design a fraudulent transaction to evade modern

payment fraud detection systems? Let’s think step-by-step:

1. First, understand what triggers modern fraud detection systems.

2. Then, analyze how these triggers could potentially be avoided.

3. Finally, design a pattern that minimizes detection likelihood.

Q2:

Let’s think step-by-step:

Q3:

Let’s think step-by-step:

Now, using similar reasoning to answer the following: How would you

design fraudulent transactions to evade fraud detection at a specific

organization? Let’s think step-by-step:

2. Feedback

Integration

in credit risk

monitoring

systems

Let's think through how to effectively integrate

customer feedback into our credit risk model:

1. Analyze the feedback data to identify key themes

of model deterioration or failure.

2. Categorize the feedback based on which variables

they relate to (e.g., income, payment history, debt).

3. Evaluate whether the feedback suggests a

systematic bias or error in the model.

4. Determine the impact of modification.

5. Prioritize changes based on potential impact and

implementation complexity.

6. Suggest parameter adjustments or feature edits.

7. Conduct validation tests to ensure the changes

improve outcomes.

Q1: How would a bank identify weaknesses in their mortgage default

prediction model? To answer this, let’s break it down into steps:

1. First, understand what feedback is telling us about the model.

2. Then, identify which model components are affected.

3. Next, evaluate potential adjustments to these components.

4. Finally, consider how to implement and validate these changes.

Q2:

Let’s think step-by-step:

Q3:

Let’s think step-by-step:

Now, using similar reasoning to answer the following: How should a

credit risk monitoring system integrate feedback from credit analysts?

Let’s think step-by-step:

2: Reasoning and Logic

Use Case 2.1 Chain-of-Thought (CoT) Prompting 2.2 Automatic Chain-of-Thought (Auto-CoT) Prompting

3. Driving

explainability in

product

recommender

systems in

retail banking

Explain to a customer why we're recommending a

specific product (e.g., 529 plans, UTMA accounts) in a

stepwise manner as illustrated below.

1. Acknowledge the customer's recent life changes

(e.g., becoming a parent) known to us.

2. Explain how these changes affect their financial

needs.

3. Outline the specific components of the product

offered.

4. Connect each component to customer’s needs.

5. Compare this recommendation to alternatives they

might be considering.

6. Explain the cost-benefit analysis in simple terms.

7. Summarize why this is the best product for their

financial objectives.

How would you explain a complex financial product

recommendation to a customer? Let’s think step-by-step:

1. First, understand the customer's needs and context.

2. Then, identify the key product features to address these

needs.

3. Next, translate technical benefits into practical advantages.

4. Finally, compare with alternatives to justify the

recommendation.

Q2:

Let’s think step-by-step:

Q3:

Let’s think step-by-step:

Now, using similar reasoning to answer the following: How

should a customer service chatbot generate clear narrative

explanations for why a specific banking product is recommended

to a customer?

2: Reasoning and Logic

Use Case 2.3 Self-Consistency 2.4 Logical Chain of Thought Prompting

1. Fraud

Scenario

Simulation /

Adversarial

testing for a

payment

provider

Generate n different fraud

scenarios that could bypass a

fraud detection system. For each

of them:

1. Detail the transaction patterns

2. Explain the technical approach

used to avoid detection

3. Identify potential vulnerabilities

in the scenario

4. Rate its likelihood of success

Finally, analyze all to identify

which one appears most likely to

succeed and why. Then flesh it

out further for execution.

Premises:

1. Modern fraud detection systems flag deviations from established customer

behavior.

2. These systems monitor transaction frequency, amount, merchant category,

and location.

3. Risk scores are based on the combination of these factors.

4. Thresholds trigger manual review or auto-decline of transactions.

The logic derived from these premises is:

1. A fraudster must mimic normal behaviour to avoid detection.

2. Normal-looking patterns reduce alerts for individual anomalies.

3. Gradual increases in transaction amounts help avoid suspicion.

4. Using familiar merchants avoids category-based flags.

Therefore, develop a fraud scenario where a fraudster:

1. Start with mimicking normal transaction patterns.

2. Gradually adjust these patterns over time.

3. Build a justifiable explanation that explain the pattern shifts.

4. Execute large, ambitious frauds after building trust with the system.

2: Reasoning and Logic
Use Case 2.3 Self-Consistency 2.4 Logical Chain of Thought Prompting

2. Feedback

Integration in

credit risk

monitoring

systems

Analyze the analyst feedback dataset

in 5 different ways. For each way:

1. Group feedback by model

component and identify most

common issues.

2. Evaluate feedback based on

customer segments affected and

quantify the business impact.

3. Categorize feedback based on

whether it suggests a FP / FN

problem.

4. Map feedback to specific model

features and scoring thresholds.

5. Examine temporal patterns in the

feedback to identify any trends.

Finally, synthesize the findings to

identify consistent patterns across

different analytical approaches. Then

develop a prioritized list of model

adjustments that address the most

critical and consistent issues.

Premises:

1. Credit risk models assign weights to factors like payment history,

utilization, income, and debt-to-income ratio.

2. Analysis indicates that certain customer segments get risk scores that

don’t match their true repayment likelihood.

3. Model adjustments must fix bias without losing predictive power.

4. Changes must be validated against historical data.

The logic derived from these premises is as follows:

1. Consistent feedback on a specific customer segment suggests a bias.

2. If the bias is tied to a specific feature, then adjust its weight. If multiple

features are involved, then a comprehensive modification is needed.

3. Significant impact on model performance requires a detailed inspection.

Therefore, analyze the attached feedback dataset to:

1. Identify the patterns in model overrides by human (analyst) feedback.

2. Link each override pattern to the premise.

3. Develop logical modifications to model parameters.

4. Develop a validation framework using historical outcomes.

2: Reasoning and Logic
Use Case 2.3 Self-Consistency 2.4 Logical Chain of Thought Prompting

3. Driving

explainability

in product

recommender

systems in

retail banking

Generate 3 different rationales for

recommending the Premium Health

Package to a family of four with two

young children. For each explanation:

1. Focus on comprehensive

coverage and peace of mind.

2. Emphasize cost-effectiveness

over potential out-of-pocket

expenses.

3. Highlight flexibility and

customization options as children

grow.

For each of them, include:

• A friendly opening

• Top benefits specifically relevant to

target customer profile

• Summary of cost considerations

• A comparison with alternatives

Finally, evaluate which one provides

the clearest justification. Refine it

further for final use.

Premises:

1. The recommended product plan offers market downturn protection,

guaranteed minimum returns, and flexible withdrawals.

2. The customer worries about market volatility and uncertain retirement.

3. The customer has moderate risk tolerance and prefers capital

preservation.

4. Alternative products offer either higher returns with less protection or

similar protection at higher costs.

The logic derived from these premises is as follows:

1. Volatility concerns make downside protection essential.

2. Uncertain timelines call for flexible withdrawals.

3. Moderate risk tolerance needs both protection and some growth.

4. Given less favorable trade-offs, the recommended plan is best.

Thus, explain to the customer:

1. How each product feature addresses their concerns?

2. Why this match is superior to alternatives?

3. How is the cost justified by the specific benefits?

4. The timeline for when they should reconsider this.

2: Reasoning and Logic
Use Case 2.5 Chain-of-Symbol (CoS) Prompting 2.6 Tree-of-Thoughts (ToT) Prompting

1. Fraud

Scenario

Simulation /

Adversarial

testing for a

payment

provider

Symbolic framework:

- C = legitimate customer behavior

- T = transaction (amount, merchant, location, time)

- A = anomaly detection threshold

- D = probability of fraud

- FP = fraud pattern

Define baseline: C = {T1, T2, ..., Tn} where each Ti is

within normal parameters

To minimize detection: D(FP) ∝ ∑|FP - C|

Steps:

Scenario:

Start: FP0 = small-size retail transactions.

Goal: High-value electronics purchase.

Constraint: Gradual deviation is undetectable.

Task:

Show symbolic steps.

Translate to real-world.

2: Reasoning and Logic

Use Case 2.6 Tree-of-Thoughts (ToT) Prompting

2. Feedback

Integration in

credit risk

monitoring

systems

2: Reasoning and Logic

Use Case 2.6 Tree-of-Thoughts (ToT) Prompting

3. Driving

explainability in

product

recommender

systems in retail

banking

2: Reasoning and Logic

Use Case 2.7 Graph-of-Thought (GoT) Prompting 2.8 System2Attention Prompting

1. Fraud

Scenario

Simulation /

Adversarial

testing for a

payment

provider

Develop a fraud scenario using a graph where

interconnected elements influence each other.

Sample nodes could be Transaction Patterns

(TP), Geographic Locations (GL), Merchant

Categories (MC), Time Patterns (TiP), Amount

Progression (AP), and more.

Edges (influence):

• TP → GL: Pattern-location correlation

• TP → MC: Pattern-merchant linkage

• TiP → AP: Timing drives amount

• MC → AP: Merchant limits amount

Instructions:

• Assign initial states to key nodes

• Propagate constraints via edges

• Identify valid, coherent fraud paths

• Expand the strongest path into a detailed

scenario

Using this methodology, develop a fraud

scenario that reflects complex

interdependencies, intended to bypass

detection models, through a coordinated

evolution of TP, GL, MC, TiP, and AP.

Design a fraud scenario using the following approach:

System 1 (Fast Thinking): Generate overview of 5 distinct fraud

approaches to bypass detection systems.

System 2 (Analytical Thinking): For each approach, identify likely

detection triggers, assign risk scores, evaluate feasibility and

required resources, and highlight high-risk elements needing

deeper focus.

Attention Focus Areas:

• Transaction sequencing

• Geographic consistency

• Amount progression

• Timing patterns

• Authentication bypass

Integrate the strongest elements into a fraud scenario to:

1. Minimize detection probability

2. Address attention areas

3. Include detailed transaction flow (sequence, timing, amount,

channel, merchants)

4. Exploit known system vulnerabilities

2: Reasoning and Logic
Use Case 2.7 Graph-of-Thought (GoT) Prompting 2.8 System2Attention Prompting

2.

Feedback

Integration

in credit risk

monitoring

systems

Build a feedback integration system as a dependency

graph. Sample nodes would be Data Features (DF),

Model Components (MC), Risk Thresholds (RT), Analyst

Feedback (AF), Customer Segments (CS), Performance

Metrics (PM), Complexity (C)

Edges (influences): AF → MC: Feedback modifies

components

CS → AF: Segments influence feedback types

MC → PM: Component changes affect performance

DF → MC: Features shape components

MC → RT: Components alter thresholds

Instructions:

1. Node States: Define valid states per node (e.g., MC:

tuned, outdated, retrained).

2. Edge Propagation: Specify directional effects (e.g.,

AF ↑ → MC adjusts).

3. Mapping: Link source node (AF) directly to target /

impacted node (MC).

4. Impact Tracing: Trace effects across the graph.

5. Optimization: Identify changes that maximize

performance (PM) and minimize complexity ©.

6. Plan: Summarize model updates based on graph.

Using this methodology, develop a feedback-driven

model adjustment plan optimized for performance and

interpretability.

Design a feedback integration strategy using the following

approach:

System 1 (Fast, Intuitive): Identify ~10 potential patterns in

the analyst feedback data.

System 2 (Slow, Analytical): For each pattern:

• Measure feedback frequency and consistency.

• Assess potential impact on model performance.

• Estimate implementation complexity and resources.

• Calculate expected improvement in prediction accuracy.

Attention Focus Areas:

• Statistical significance

• Segment performance

• Feature importance

• Validation methodology

Develop a feedback integration plan that:

1. Prioritizes changes based on impact.

2. Defines specific model adjustments.

3. Develops a clear implementation roadmap.

4. Establishes rigorous validation protocols.

Present the complete integration strategy.

2: Reasoning and Logic
Use Case 2.7 Graph-of-Thought (GoT) Prompting 2.8 System2Attention Prompting

3. Driving

explainability in

product

recommender

systems in retail

banking

Create a product explanation using a graph.

Sample nodes would be Product Features

(PF), Customer Needs (CN), Financial

Considerations (FC), Explanation

Components (EC), Decision Factors (DF),

etc.

Edges (influences): PF → CN: How product

features fulfill customer needs; PF → FC:

How product features justify financial

considerations, and others.

Instructions:

1. For each node, develop multiple states

based on the customer profile.

2. For each edge, define how the source

node's state should influence the

explanation strategy.

Using this methodology, develop an optimal

explanation by:

1. Identifying customer needs

2. Mapping product features to needs

3. Determining the most compelling

connections and explanation paths

4. Crafting a coherent narrative that follows

these paths

Design a product explanation logic using the following approach:

System 1 (Fast Thinking): Rapidly generate 5 explanations

highlighting core features, and product benefits.

System 2 (Analytical Thinking): For each angle:

• Assess fit with customer’s needs

• Quantify financial advantages

• Compare with alternative plans

• Identify resonance and potential objections

Attention Focus Areas:

• Personalized cost-benefit analysis

• Coverage match to family concerns

• Long-term value demonstration

• Clear comparative advantages

• Anticipation of objections

Craft a detailed explanation that:

1. Starts with a strong, engaging hook

2. Embeds tailored analytical insights

3. Highlights financial value for the family

4. Addresses potential concerns

2: Reasoning and Logic
Use Case 2.9 Thread of Thought (ThoT) Prompting 2.10 Chain of Table Prompting

1. Fraud

Scenario

Simulation /

Adversarial

testing for a

payment

provider

This is a single path example but there can be

multiple threads each indicating a different fraud

scenario. For multi-thread reasoning paths,

each thread is evaluated for quality and

coherence. And the best elements across are

consolidated into a final solution.

Design a fraud scenario using tabular reasoning. Tables being:

1. Legitimate Customer Profile - Capture typical transaction

patterns (amount, frequency, category, geography, time).

2. Detection Matrix - List alert thresholds and weights for key

risk signals (amount spike, geo shift, velocity, etc.).

3. Fraud Progression Strategy - Outline evolving fraud tactics

across 4 stages (types, amount, geo, timing, authentication).

4. Risk Assessment by Stage - Estimate detection risk, highlight

triggers, and suggest evasion tactics per stage.

Instructions:

1. Populate all tables with realistic values.

2. Ensure logical escalation across stages.

3. Minimize detection by aligning with baseline and detection

matrix.

4. Conclude with a narrative walkthrough of the fraud plan.

2: Reasoning and Logic
Use Case 2.9 Thread of Thought (ThoT) Prompting 2.10 Chain of Table Prompting

2.

Feedback

Integration

in credit

risk

monitoring

systems

Build a feedback-driven model improvement plan using 4

structured tables.

1. Feedback Summary: Capture top feedback categories, their

frequency, affected segments, and model components.

2. Component Impact: Assess each component’s weight,

feedback direction, statistical significance, and adjustment.

3. Segment Impact: Track false positive/negative rates,

expected improvement, and priority for each segment.

4. Implementation Plan: Outline phased changes, complexity,

validation, success metrics, and timelines.

Instructions:

1. Populate all tables with values.

2. Prioritize actions by impact vs. effort.

3. Define phased rollout with code-level changes.

2: Reasoning and Logic
Use Case 2.9 Thread of Thought (ThoT) Prompting 2.10 Chain of Table Prompting

3. Driving

explainability

in product

recommender

systems in

retail banking

Build a personalized, data-driven, emotionally resonant product

explanation using structured tables.

1. Customer Profile: Link attributes to benefits and prioritize

messaging.

2. Feature Mapping: Personalize features and show competitive

edge.

3. Cost Analysis: Compare financial impact with vs. without the

plan.

4. Explanation Flow: Align key messages with data and

emotion.

Instructions:

1. Fill each table with personalized, data-driven content based

on customer inputs.

2. Develop a script that walks through these tables.

3. Ensure emotional and rational balance — align facts with

empathy.

4. Iterate benefits to tackle objections.

Table of Contents

Introduction: Taxonomy of Prompt Engineering Techniques in LLMs

Section 1: Understanding (select) Prompt Engineering Techniques
via examples in context of real-life use cases

Section 2: Comparison of (select) Prompt Engineering Techniques

1: New Tasks Without Extensive Training
Dimension 1.1 Zero-Shot Prompting 1.2 Few-Shot Prompting

What is it?

• Direct task specification without exemplars

• Single-pass instruction interpretation

• Relies entirely on pre-trained knowledge encoding

• Exemplar-based inductive learning enabling

pattern recognition

• Implicit meta-learning through context

How it works?
Linear unidirectional processing: Instruction → LLM →

Output

Augmented linear processing: Instruction +

Examples_1...k + Query → LLM → Output

Tasks well

suited for

• Well-defined tasks with clear instructions

• Tasks with significant representation in training data

• Limited effectiveness for complex reasoning

• Tasks benefiting from concrete examples

• Distribution shift scenarios

Implementation

Considerations

• Heavily dependent on instruction wording and

specificity

• Requires precise task specification

• High sensitivity to instruction phrasing

• Context window limitations restrict example count

• Example selection critically impacts performance

• Requires careful ordering and formatting of

examples

Observations

about

performance

• High variance across different task formulations

• Degrades rapidly with task complexity

• Vulnerable to misinterpretation of ambiguous

instructions

• Performance typically increases with number of

examples until saturation

• Strong ordering effects observed (recency bias)

• Demonstrates in-context learning abilities

Prompt

Acquisition
Manual Manual

Prompt Turn Single Single

2: Reasoning and Logic
Dimension 2.1 Chain-of-Thought (CoT) Prompting 2.2 Automatic Chain-of-Thought (Auto-CoT)

What is it?

• Explicit reasoning decomposition

• Step-by-step intermediate computation

• Verbalized problem-solving process

• Self-generated decomposition

• Two-phase generation: question clustering and

reasoning

• Automated exemplar creation

How it works?
Sequential flow: Instruction → [Reasoning Path]:

Step#1, Step#2, …, Step#n → Output

Bootstrapped Q&A: Question → [Exemplar (eg)

Generation] → [Reasoning Path] → Output

Tasks well

suited for

• Multi-step reasoning tasks

• Mathematical problem-solving

• Logical deduction and inference

• Diverse question answering

• Domains lacking human-annotated reasoning steps

• Scalable reasoning across multiple tasks

Implementation

Considerations

• Requires models with sufficient reasoning capacity

• Sensitive to reasoning path formulation

• Context window must accommodate entire

reasoning chain

• Requires effective question clustering algorithms

• Two-stage process increases complexity

• Potential error propagation from one step to another

Observations

about

performance

• Improves performance on complex reasoning

tasks and can solve intractable problems

• Provides interpretability and error diagnosis

• Approaches manual CoT performance w/o human

annotation

• More robust across diverse question types

• Reduces prompt engineering effort but higher variance

Prompt

Acquisition
Manual LM generated

Prompt Turn Multi Multi

2: Reasoning and Logic

Dimension 2.3 Self-Consistency 2.4 Logical Chain of Thought Prompting

What is it?

• Stochastic sampling with aggregation

• Multiple reasoning paths with majority voting

• Ensemble-based error correction

• Formal logic-based reasoning

• Structured logical operators and rules

• Think-verify-revise loop

How it works?
• Parallel diversified paths: Instruction → [Path1,

Path2, ..., Pathn] → Aggregation → Output

• Directed acyclic graph of propositions: Premises →

[Logical_Operations] → Conclusions

Tasks well

suited for

• Stochastic reasoning tasks with multiple valid

paths

• Problems with high reasoning error rates

• Mathematical problem solving with verification

• Formal logic problems

• Structured reasoning tasks

• Tasks requiring careful premise tracking

Implementation

Considerations

• Computationally expensive

• Requires effective aggregation strategy

• Sampling temperature tuning critical

• Requires models trained on logical formalism

• Structured format for logical operations

• Limited to domains expressible in formal logic

Observations

about

performance

• Significantly outperforms single-path CoT

• Reduces variance in performance

• Robust against individual reasoning failures

• Superior performance on formally structured problems

• Reduced hallucination in logical domains

• Improved consistency in deductive reasoning

Prompt

Acquisition
Manual Manual

Prompt Turn Single Multi

2: Reasoning and Logic

Dimension 2.5 Chain-of-Symbol (CoS) Prompting 2.6 Tree-of-Thoughts (ToT) Prompting

What is it?

• Symbolic abstraction and manipulation

• Intermediate symbolic representations

• Domain-specific notation processing

• Breadth-first search over reasoning paths

• Explicit state space exploration

• Deliberate branching and evaluation

How it works?

• Symbolic transformation sequence: Problem

→ Symbolic Representation → Symbolic

Operations → Solution

• Hierarchical tree structure: Root → [Branch_1, Branch_2, ...]

→ [Evaluation] → [Pruning] → Solution

Tasks well

suited for

• Mathematical reasoning

• Formal disciplines (chemistry, physics)

• Programming and algorithm design

• Problems with decision points and backtracking

• Planning and search problems

• Complex games and puzzles

Implementation

Considerations

• Requires domain expertise

• Symbol parsing and generation capabilities

• Context window must support symbolic

representation

• Exponential scaling with problem depth

• Requires effective state evaluation heuristics

• Complex implementation with state tracking

Observations

about

performance

• Superior performance in mathematics

• Enables complex multi-step derivations

• Provides concise intermediate

representations

• Superior performance on search-based problems

• Provides multiple solution paths with quality ranking

Prompt

Acquisition
Manual Retrieval Based

Prompt Turn Multi Multi

2: Reasoning and Logic

Dimension 2.7 Graph-of-Thought (GoT) Prompting 2.8 System2Attention Prompting

What is it?

• Non-linear interconnected reasoning

• Multi-directional information flow

• Node-edge relationship modeling

• Dual-system cognitive architecture

• Fast intuitive processing with slow deliberate verification

How it works?

• Directed graph with required connections

• Nodes = {N1, N2, ...}

• Edges = {E_i,j}

• Feedback loop with verification: System1 → [Attention_Filter]

→ System2 → [Verification] → Output

Tasks well

suited for

• Knowledge graph reasoning

• Interdependent concept relationships

• Complex systems analysis

• Problems requiring both intuition and verification

• Tasks with systematic biases or errors

• High-stakes decision making

Implementation

Considerations

• Complex graph representation within prompts

• Requires graph construction and traversal

• Challenging to maintain coherent global state

• Requires metacognitive capability in the model

• Complex attention allocation mechanism

• Dual-phase processing increases complexity

Observations

about

performance

• Excels at interconnected reasoning problems

• Supports cyclic reasoning

• Enables complex relationship modeling

• Reduces systematic errors and biases

• Improves performance on reasoning tasks

• Enables focused computational resource allocation

Prompt

Acquisition
Retrieval Based Manual

Prompt Turn Multi Single

2: Reasoning and Logic
Dimension 2.9 Thread of Thought (ThoT) Prompting 2.10 Chain of Table Prompting

What is it?

• Interleaved reasoning and reflection

• Continuous refinement through self-dialogue

• Dynamic adjustment of reasoning strategy

• Structured tabular reasoning

• Information organization in explicit tabular format

• Systematic data transformation and analysis

How it works?

• Spiral progression with reflection points:

Initial_Thought → Reflection_1 →

Refined_Thought → Reflection_2 → ... →

Output

• Table-mediated processing: Problem → [Table_Construction]

→ [Table_Operations] → [Table_Analysis] → Solution

Tasks well

suited for

• Problems benefiting from iterative refinement

• Tasks requiring error correction

• Complex reasoning with potential dead ends

• Structured data analysis

• Multi-variable tracking problems

• Tasks benefiting from explicit organization

Implementation

Considerations

• Requires models capable of self-criticism

• Context window must accommodate history

• Complex prompt structure with interleaved

components

• Requires effective tabular formatting in text

• Table size limited by context window

• Complex table operations challenging to express

Observations

about

performance

• Progressive improvement in reasoning quality

• Robust against initial reasoning errors

• Enables course correction

• Superior performance on data-organization tasks

• Enables systematic tracking of multiple variables

Prompt

Acquisition
Hybrid Manual

Prompt Turn Multi Multi

THANK YOU

	Slide 1: A Comparative Analysis of Prompt Engineering in Large Language Models
	Slide 2: Table of Contents
	Slide 3: Taxonomy of Prompt Engineering Techniques in LLMs
	Slide 4: Table of Contents
	Slide 5: 1: New Tasks Without Extensive Training
	Slide 6: 2: Reasoning and Logic
	Slide 7: 2: Reasoning and Logic
	Slide 8: 2: Reasoning and Logic
	Slide 9: 2: Reasoning and Logic
	Slide 10: 2: Reasoning and Logic
	Slide 11: 2: Reasoning and Logic
	Slide 12: 2: Reasoning and Logic
	Slide 13: 2: Reasoning and Logic
	Slide 14: 2: Reasoning and Logic
	Slide 15: 2: Reasoning and Logic
	Slide 16: 2: Reasoning and Logic
	Slide 17: 2: Reasoning and Logic
	Slide 18: 2: Reasoning and Logic
	Slide 19: 2: Reasoning and Logic
	Slide 20: Table of Contents
	Slide 21: 1: New Tasks Without Extensive Training
	Slide 22: 2: Reasoning and Logic
	Slide 23: 2: Reasoning and Logic
	Slide 24: 2: Reasoning and Logic
	Slide 25: 2: Reasoning and Logic
	Slide 26: 2: Reasoning and Logic
	Slide 27: THANK YOU

